Safety, pharmacokinetics, and immunomodulatory effects of lenalidomide in children and adolescents with relapsed/refractory solid tumors or myelodysplastic syndrome: a Children's Oncology Group Phase I Consortium report.

Texas Children's Cancer Center, 6621 Fannin St, MC3-3320, Houston, TX 77030, USA.
Journal of Clinical Oncology (Impact Factor: 17.88). 01/2011; 29(3):316-23. DOI: 10.1200/JCO.2010.30.8387
Source: PubMed

ABSTRACT To determine the maximum-tolerated or recommended phase II dose, dose-limiting toxicities (DLTs), pharmacokinetics (PK), and immunomodulatory effects of lenalidomide in children with recurrent or refractory solid tumors or myelodysplastic syndrome (MDS).
Cohorts of children with solid tumors received lenalidomide once daily for 21 days, every 28 days at dose levels of 15 to 70 mg/m(2)/dose. Children with MDS received a fixed dose of 5 mg/m(2)/dose. Specimens for PK and immune modulation were obtained in the first cycle.
Forty-nine patients (46 solid tumor, three MDS), median age 16 years (range, 1 to 21 years), were enrolled, and 42 were fully assessable for toxicity. One patient had a cerebrovascular ischemic event of uncertain relationship to lenalidomide. DLTs included hypercalcemia at 15 mg/m(2); hypophosphatemia/hypokalemia, neutropenia, and somnolence at 40 mg/m(2); and urticaria at 55 mg/m(2). At the highest dose level evaluated (70 mg/m(2)), zero of six patients had DLT. A maximum-tolerated dose was not reached. No objective responses were observed. PK studies (n = 29) showed that clearance is faster in children younger than 12 years of age. Immunomodulatory studies (n = 26) showed a significant increase in serum interleukin (IL) -2, IL-15, granulocyte-macrophage colony-stimulating factor, natural killer (NK) cells, NK cytotoxicity, and lymphokine activated killer (LAK) cytoxicity, and a significant decrease in CD4(+)/CD25(+) regulatory T cells.
Lenalidomide is well-tolerated at doses up to 70 mg/m(2)/d for 21 days in children with solid tumors. Drug clearance in children younger than 12 years is faster than in adolescents and young adults. Lenalidomide significantly upregulates cellular immunity, including NK and LAK activity.


Available from: Susan M Blaney, Jun 10, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The immunosurveillance mechanisms governing high-risk neuroblastoma (HR-NB), a major pediatric malignancy, have been elusive. We identify a potential role for natural killer (NK) cells, in particular the interaction between the NK receptor NKp30 and its ligand, B7-H6, in the metastatic progression and survival of HR-NB after myeloablative multimodal chemotherapy and stem cell transplantation. NB cells expressing the NKp30 ligand B7-H6 stimulated NK cells in an NKp30-dependent manner. Serum concentration of soluble B7-H6 correlated with the down-regulation of NKp30, bone marrow metastases, and chemoresistance, and soluble B7-H6 contained in the serum of HR-NB patients inhibited NK cell functions in vitro. The expression of distinct NKp30 isoforms affecting the polarization of NK cell functions correlated with 10-year event-free survival in three independent cohorts of HR-NB in remission from metastases after induction chemotherapy (n = 196, P < 0.001), adding prognostic value to known risk factors such as N-Myc amplification and age >18 months. We conclude that the interaction between NKp30 and B7-H6 may contribute to the fate of NB patients and that both the expression of NKp30 isoforms on circulating NK cells and the concentration of soluble B7-H6 in the serum may be clinically useful as biomarkers for risk stratification. Copyright © 2015, American Association for the Advancement of Science.
    Science translational medicine 04/2015; 7(283):283ra55. DOI:10.1126/scitranslmed.aaa2327 · 14.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The past decade has seen several anticancer immunotherapeutic strategies transition from "promising preclinical models" to treatments with proven clinical activity or benefit. In 2013, the journal Science selected the field of Cancer Immunotherapy as the overall number-1 breakthrough for the year in all of scientific research. In the setting of cancer immunotherapy for adult malignancies, many of these immunotherapy strategies have relied on the cancer patient's endogenous antitumor T-cell response. Although much promising research in pediatric oncology is similarly focused on T-cell reactivity, several pediatric malignancies themselves, or the chemo-radiotherapy used to achieve initial responses, can be associated with profound immune suppression, particularly of the T-cell system. A separate component of the immune system, also able to mediate antitumor effects and less suppressed by conventional cancer treatment, is the NK-cell system. In recent years, several distinct immunotherapeutic approaches that rely on the activity of NK cells have moved from preclinical development into clinical testing, and some have shown clear antitumor benefit. This review provides an overview of NK cell-based immunotherapy efforts that are directed toward childhood malignancies, with an emphasis on protocols that are already in clinical testing.
    Journal of Pediatric Hematology/Oncology 01/2015; 37(2). DOI:10.1097/MPH.0000000000000303 · 0.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunomodulatory drugs (IMiDs) currently used in the treatment of multiple myeloma, are thalidomide, lenalidomide and pomalidomide. One of the most common side effects of thalidomide is neurotoxicity, predominantly in the form of peripheral neuropathy. We report 6 cases of significant central neurotoxicity associated with IMiD therapy. Treatment with thalidomide (1 patient), lenalidomide (4 patients), and pomalidomide (1 patient) was associated with various clinical manifestations of central neurotoxicity, including reversible coma, amnesia, expressive aphasia, and dysarthria. Central neurotoxicity should be recognized as an important side effect of IMiD therapy.
    02/2015; 7(1):5704. DOI:10.4081/hr.2015.5704