Safety, pharmacokinetics, and immunomodulatory effects of lenalidomide in children and adolescents with relapsed/refractory solid tumors or myelodysplastic syndrome: a Children's Oncology Group Phase I Consortium report.

Texas Children's Cancer Center, 6621 Fannin St, MC3-3320, Houston, TX 77030, USA.
Journal of Clinical Oncology (Impact Factor: 17.88). 01/2011; 29(3):316-23. DOI: 10.1200/JCO.2010.30.8387
Source: PubMed

ABSTRACT To determine the maximum-tolerated or recommended phase II dose, dose-limiting toxicities (DLTs), pharmacokinetics (PK), and immunomodulatory effects of lenalidomide in children with recurrent or refractory solid tumors or myelodysplastic syndrome (MDS).
Cohorts of children with solid tumors received lenalidomide once daily for 21 days, every 28 days at dose levels of 15 to 70 mg/m(2)/dose. Children with MDS received a fixed dose of 5 mg/m(2)/dose. Specimens for PK and immune modulation were obtained in the first cycle.
Forty-nine patients (46 solid tumor, three MDS), median age 16 years (range, 1 to 21 years), were enrolled, and 42 were fully assessable for toxicity. One patient had a cerebrovascular ischemic event of uncertain relationship to lenalidomide. DLTs included hypercalcemia at 15 mg/m(2); hypophosphatemia/hypokalemia, neutropenia, and somnolence at 40 mg/m(2); and urticaria at 55 mg/m(2). At the highest dose level evaluated (70 mg/m(2)), zero of six patients had DLT. A maximum-tolerated dose was not reached. No objective responses were observed. PK studies (n = 29) showed that clearance is faster in children younger than 12 years of age. Immunomodulatory studies (n = 26) showed a significant increase in serum interleukin (IL) -2, IL-15, granulocyte-macrophage colony-stimulating factor, natural killer (NK) cells, NK cytotoxicity, and lymphokine activated killer (LAK) cytoxicity, and a significant decrease in CD4(+)/CD25(+) regulatory T cells.
Lenalidomide is well-tolerated at doses up to 70 mg/m(2)/d for 21 days in children with solid tumors. Drug clearance in children younger than 12 years is faster than in adolescents and young adults. Lenalidomide significantly upregulates cellular immunity, including NK and LAK activity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite evidence of cancer immune-surveillance, which plays a key role in tumor rejection, cancer cells can escape immune recognition through different mechanisms. Thus, evasion to Natural killer (NK) cell-mediated anti-tumor activity is commonly described and is mediated by various mechanisms, mainly cancer cell-induced down-regulation of NK-activating receptors (NCRs, NKG2D, DNAM-1, and CD16) as well as up-regulation of inhibitory receptors (killer-cell immunoglobulin-like receptors, KIRs, NKG2A). Alterations of NK cells lead to an impaired recognition of tumor cells as well as a decreased ability to interact with immune cells. Alternatively, cancer cells downregulate expression of ligands for NK cell-activating receptors and up-regulate expression of the ligands for inhibitory receptors. A better knowledge of the extent and the mechanisms of these defects will allow developing pharmacological strategies to restore NK cell ability to recognize and lyse tumor cells. Combining conventional chemotherapy and immune modulation is a promising approach likely to improve clinical outcome in diverse neoplastic malignancies. Here, we overview experimental approaches as well as strategies already available in the clinics that restore NK cell functionality. Yet successful cancer therapies based on the manipulation of NK cell already have shown efficacy in the context of hematologic malignancies. Additionally, the ability of cytotoxic agents to increase susceptibility of tumors to NK cell lysis has been studied and may require improvement to maximize this effect. More recently, new strategies were developed to specifically restore NK cell phenotype or to stimulate NK cell functions. Overall, pharmacological immune modulation trends to be integrated in therapeutic strategies and should improve anti-tumor effects of conventional cancer therapy.
    Frontiers in Immunology 03/2014; 5:122. DOI:10.3389/fimmu.2014.00122
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although acute myelogenous leukemia (AML) accounts for <20 % of leukemia in children, it is responsible for over half of all pediatric leukemia deaths. Improvement in event-free survival rates, now over 50 %, are due largely to intensification of chemotherapy, aggressive supportive care, development of risk stratification based on cytogenetic and molecular markers, and improved salvage regimens. Despite this improvement over the past few decades, the survival rates have recently plateaued, and further improvement will need to take into account advances in molecular characterization of AML, development of novel agents, and better understanding of host factors influencing toxicity and response to chemotherapy. This article reviews the epidemiology and biology trends in diagnosis and treatment of pediatric acute myelogenous leukemia.
    Paediatric Drugs 03/2014; 16(3). DOI:10.1007/s40272-014-0067-3 · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells are lymphocytes of the innate immune system that have the ability to recognize malignant cells through detection of a variety of cell-surface indicators of stress and danger. Once activated through such recognition, NK cells release cytokines and induce target cell lysis through a variety of mechanisms. NK cells are increasingly recognized as important mediators of other immunotherapeutic modalities, including cytokines, antibodies, immunomodulators, and stem cell transplantation. Adoptive immunotherapies with NK cells are being tested in early-stage clinical trials, and recent advances in manipulating their number and function have caused a renewed emphasis on this cancer-fighting cell. In this chapter we address the evidence for NK cell recognition of osteosarcoma in vitro and in vivo, discuss new therapies that are directly or indirectly dependent on NK cell function, and describe potential approaches for manipulating NK cell number and function to enhance therapy against osteosarcoma.
    Advances in Experimental Medicine and Biology 01/2014; 804:341-53. DOI:10.1007/978-3-319-04843-7_19 · 2.01 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014