Article

HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development.

The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
Molecular and Cellular Biology (Impact Factor: 5.04). 02/2011; 31(4):845-60. DOI: 10.1128/MCB.00159-10
Source: PubMed

ABSTRACT We report here that the MYST histone acetyltransferase HBO1 (histone acetyltransferase bound to ORC; MYST2/KAT7) is essential for postgastrulation mammalian development. Lack of HBO1 led to a more than 90% reduction of histone 3 lysine 14 (H3K14) acetylation, whereas no reduction of acetylation was detected at other histone residues. The decrease in H3K14 acetylation was accompanied by a decrease in expression of the majority of genes studied. However, some genes, in particular genes regulating embryonic patterning, were more severely affected than "housekeeping" genes. Development of HBO1-deficient embryos was arrested at the 10-somite stage. Blood vessels, mesenchyme, and somites were disorganized. In contrast to previous studies that reported cell cycle arrest in HBO1-depleted cultured cells, no defects in DNA replication or cell proliferation were seen in Hbo1 mutant embryo primary fibroblasts or immortalized fibroblasts. Rather, a high rate of cell death and DNA fragmentation was observed in Hbo1 mutant embryos, resulting initially in the degeneration of mesenchymal tissues and ultimately in embryonic lethality. In conclusion, the primary role of HBO1 in development is that of a transcriptional activator, which is indispensable for H3K14 acetylation and for the normal expression of essential genes regulating embryonic development.

0 Bookmarks
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulation of histone acetylation is fundamental to the utilization of eukaryotic genomes in chromatin. Aberrant acetylation contributes to disease and can be clinically combated by inhibiting the responsible enzymes. Our knowledge of the histone acetylation system is patchy because we so far lacked the meth-odology to describe acetylation patterns and their genesis by integrated enzyme activities. We devised a generally applicable, mass spectrometry-based strategy to precisely and accurately quantify combi-natorial modification motifs. This was applied to generate a comprehensive inventory of acetylation motifs on histones H3 and H4 in Drosophila cells. Systematic depletion of known or suspected acetyl-transferases and deacetylases revealed specific alterations of histone acetylation signatures, estab-lished enzyme-substrate relationships, and unveiled an extensive crosstalk between neighboring modifi-cations. Unexpectedly, overall histone acetylation levels remained remarkably constant upon depletion of individual acetyltransferases. Conceivably, the acetylation level is adjusted to maintain the global charge neutralization of chromatin and the stability of nuclei. INTRODUCTION
    Molecular Cell 01/2015; 57(3). · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate reprogramming.
    Frontiers in Genetics 02/2015; 6.
  • Cell cycle (Georgetown, Tex.) 07/2014; 13(15). · 5.24 Impact Factor

Full-text (2 Sources)

Download
34 Downloads
Available from
May 28, 2014