Differential gene expression in anterior pituitary glands from anestrous and cycling postpartum beef cows.

USDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301, USA.
Journal of Animal Science (Impact Factor: 2.09). 12/2010; 89(4):1035-41. DOI: 10.2527/jas.2010-3433
Source: PubMed

ABSTRACT Oligonucleotide microarrays (GeneChip Bovine Genome Arrays, Affymetrix Inc., Santa Clara, CA) were used to evaluate gene expression profiles in anterior pituitary glands collected from 4 anestrous and 4 cycling postpartum primiparous beef cows to provide insight into genes associated with transition from an anestrous to a cycling status. Tissues were collected 40 to 61 d after calving from anestrous cows and from cyclic cows between d 7 and 13 of the estrous cycle (luteal phase) from d 54 to 77 after calving. Hybridization signals were normalized across arrays, and genes with mean differences in expression that were at least 1.5-fold apart and with a minimum difference in mean signal intensity of 10 were compared. Based on these criteria, 47 transcripts were increased (P < 0.025) and 31 transcripts were decreased (P < 0.025) in pituitary gland tissue from cycling compared with anestrous cows. Few transcripts identified in this analysis were associated previously with reproductive function. To provide greater detail on the influence that stage of the estrous cycle (i.e., collection during the luteal phase) might have on the differences detected in gene expression, quantitative real-time PCR was used to compare gene expression in anterior pituitaries of anestrous cows with an additional independent set of anterior pituitary glands collected at 4 different stages of the estrous cycle: 0.5 to 2 d (n = 9), 5 to 6.5 d (n = 5), 11.4 to 13.7 d (n = 5), and 17.9 to 19 d (n = 6) after the onset of estrus. Gastrin-releasing peptide, the gene that exhibited the largest fold increase in expression in the microarray experiment, and IGFBP3 mRNA were expressed at greater (P < 0.004) amounts in samples from the different stages of the estrous cycle than in samples from anestrous cows. In addition, expression of IGFBP3 mRNA was proportional to serum progesterone concentrations throughout the estrous cycle (P < 0.05). Expression of versican mRNA was decreased (P = 0.03) in samples from the different stages of the estrous cycle compared with anestrous cow samples. Results identified numerous genes that may be involved in the transition from anestrous to cycling status, providing novel insight into mechanisms regulating reproductive function.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) is present in high concentrations within the hypothalamus, suggesting that it may be a hypophysiotropic factor, whereas pituitary expression suggests a paracrine function. PACAP stimulates gonadotropin secretion and enhances GnRH responsiveness. PACAP increases gonadotropin α-subunit (αGSU), lengthens LHβ, but reduces FSHβ mRNA levels in adult pituitary cell cultures in part by increasing follistatin. PACAP stimulates LH secretion in rats; however, acceptance of PACAP as a regulator of reproduction has been limited by a paucity of in vivo studies. We created a transgenic mouse model of pituitary PACAP overexpression using the αGSU subunit promoter. Real-time PCR was used to evaluate PACAP, follistatin, GnRH receptor, and the gonadotropin subunit mRNA in male transgenic and wild-type mice of various ages. Transgenic mice had greater than 1000-fold higher levels of pituitary PACAP mRNA; and immunocytochemistry, Western blot, and ELISA analyses confirmed high peptide levels. FSH, LH, and testosterone levels were significantly suppressed, and the timing of puberty was substantially delayed in PACAP transgenic mice in which gonadotropin subunit and GnRH receptor mRNA levels were reduced and pituitary follistatin expression was increased. Microarray analyses revealed 1229 of 45102 probes were significantly (P < 0.01) different in pituitaries from PACAP transgenic mice, of which 83 genes were at least 2-fold different. Genes involved in small molecule biochemistry, cancer, and reproductive system diseases were the top associated networks. The GnRH signaling pathway was the top canonical pathway affected by pituitary PACAP excess. These experiments provide the first evidence that PACAP affects gonadotropin expression and sexual maturation in vivo.
    Endocrinology 03/2012; 153(3):1421-34. · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microarray development changed the way biologists approach the holistic study of cells and tissues. In dairy cattle biosciences, the application of omics technology, from spotted microarrays to next-generation sequencing and proteomics, has grown steadily during the past 10 years. Omics has found application in fields such as dairy cattle nutritional physiology, reproduction, and immunology. Generating biologically meaningful data from omics studies relies on bioinformatics tools. Both are key components of the systems physiology toolbox, which allows study of the interactions between a condition (e.g., nutrition, physiological state) with tissue gene/protein expression and the associated changes in biological functions. The nature of physiologic and metabolic adaptations in dairy cattle at any stage of the life cycle is multifaceted, involves multiple tissues, and is dynamic, e.g., the transition from late-pregnancy to lactation. Application of integrative systems physiology in periparturient dairy cattl...
  • [Show abstract] [Hide abstract]
    ABSTRACT: Renalase was initially identified in human kidney as a soluble monoamine oxidase. Here we show that renalase is predominantly expressed in reproductive/steroidogenic systems, with particularly substantial expression in oocytes, granulosa, interstitial and luteal cells of ovary, spermatogenic cells of testis, and cortex of adrenal gland, suggesting its function(s) in maturation of germ cells and steroid hormone regulation. Renalase expression increases in testes and ovaries as mice develop and its expression is further enhanced in the ovaries of pregnant mice, indicating an activity of renalase in reproduction. Gonadotropin-releasing hormone (GnRH) antagonist, cetrorelix, repressed renalase expression in mice ovaries and testes, suggesting that steroids regulate renalase expression. Leptin is an effector and modulator of steroid hormones and reproduction. Surprisingly, knockout of leptin causes a dramatic increase of renalase expression in mice testes. Taken together, our results suggest that reproductive/steroidogenic systems are also the sources for renalase secretion and renalase may play a critical role in reproduction and hormone regulation. This provides a novel insight into understanding the function of renalase.
    Molecular Biology Reports 12/2012; · 2.51 Impact Factor