Myosin VI and its binding partner optineurin are involved in secretory vesicle fusion at the plasma membrane.

Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB20XY, United Kingdom.
Molecular biology of the cell (Impact Factor: 5.98). 01/2011; 22(1):54-65. DOI: 10.1091/mbc.E10-06-0553
Source: PubMed

ABSTRACT During constitutive secretion, proteins synthesized at the endoplasmic reticulum (ER) are transported to the Golgi complex for processing and then to the plasma membrane for incorporation or extracellular release. This study uses a unique live-cell constitutive secretion assay to establish roles for the molecular motor myosin VI and its binding partner optineurin in discrete stages of secretion. Small interfering RNA-based knockdown of myosin VI causes an ER-to-Golgi transport delay, suggesting an unexpected function for myosin VI in the early secretory pathway. Depletion of myosin VI or optineurin does not affect the number of vesicles leaving the trans-Golgi network (TGN), indicating that these proteins do not function in TGN vesicle formation. However, myosin VI and optineurin colocalize with secretory vesicles at the plasma membrane. Furthermore, live-cell total internal reflection fluorescence microscopy demonstrates that myosin VI or optineurin depletion reduces the total number of vesicle fusion events at the plasma membrane and increases both the proportion of incomplete fusion events and the number of docked vesicles in this region. These results suggest a novel role for myosin VI and optineurin in regulation of fusion pores formed between secretory vesicles and the plasma membrane during the final stages of secretion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroendocrine (NE) cells use large dense core vesicles (LDCVs) to traffic, process, store and secrete neuropeptide hormones through the regulated secretory pathway. The dimmed (DIMM) basic helix-loop-helix transcription factor of Drosophila controls the level of regulated secretory activity in NE cells. To pursue its mechanisms, we have performed two independent genome-wide analyses of DIMM's activities: (i) in vivo chromatin immunoprecipitation (ChIP) to define genomic sites of DIMM occupancy and (ii) deep sequencing of purified DIMM neurons to characterize their transcriptional profile. By this combined approach, we showed that DIMM binds to conserved E-boxes in enhancers of 212 genes whose expression is enriched in DIMM-expressing NE cells. DIMM binds preferentially to certain E-boxes within first introns of specific gene isoforms. Statistical machine learning revealed that flanking regions of putative DIMM binding sites contribute to its DNA binding specificity. DIMM's transcriptional repertoire features at least 20 LDCV constituents. In addition, DIMM notably targets the pro-secretory transcription factor, creb-A, but significantly, DIMM does not target any neuropeptide genes. DIMM therefore prescribes the scale of secretory activity in NE neurons, by a systematic control of both proximal and distal points in the regulated secretory pathway. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015; 43(4). DOI:10.1093/nar/gku1377 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder primarily affecting motor neurons. Mutations in optineurin cause a proportion of familial ALS cases, and wildtype optineurin is misfolded and forms inclusions in sporadic ALS patient motor neurons. However it is unknown how optineurin mutation or misfolding leads to ALS. Optineurin acts an adaptor protein connecting the molecular motor myosin VI to secretory vesicles and autophagosomes. Here we demonstrate that ALS-linked mutations p.Q398X and p.E478G disrupt the association of optineurin with myosin VI, leading to an abnormal diffuse cytoplasmic distribution, inhibition of secretory protein trafficking, endoplasmic reticulum (ER) stress and Golgi fragmentation in motor neuron-like NSC-34 cells. We also provide further insight into the role of optineurin as an autophagy receptor. Wildtype optineurin associated with lysosomes and promoted autophagosome fusion to lysosomes in neuronal cells, implying it mediates trafficking of lysosomes during autophagy in association with myosin VI. However, either expression of ALS mutant optineurin or siRNA-mediated knockdown of endogenous optineurin blocked lysosome fusion to autophagosomes, resulting in autophagosome accumulation. Together these results indicate that ALS-linked mutations in optineurin disrupt myosin VI-mediated intracellular trafficking processes. In addition, in control human patient tissues optineurin displayed its normal vesicular localization but in sporadic ALS patient tissues, vesicles were present in a significantly decreased proportion of motor neurons. Optineurin binding to myosin VI was also decreased in tissue lysates from sporadic ALS spinal cords. This study therefore links several previously described pathological mechanisms in ALS, including defects in autophagy, fragmentation of the Golgi, and induction of ER stress, to disruption of optineurin function. These findings also indicate that optineurin-myosin VI dysfunction is a common feature of both sporadic and familial ALS. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email:
    Human Molecular Genetics 04/2015; DOI:10.1093/hmg/ddv126 · 6.68 Impact Factor