Clinical and Molecular Evaluation of SHOX/PAR1 Duplications in Leri-Weill Dyschondrosteosis (LWD) and Idiopathic Short Stature (ISS)

Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Madrid, Spain
The Journal of Clinical Endocrinology and Metabolism (Impact Factor: 6.31). 02/2011; 96(2):E404-12. DOI: 10.1210/jc.2010-1689
Source: PubMed

ABSTRACT Léri-Weill dyschondrosteosis (LWD) is a skeletal dysplasia characterized by disproportionate short stature and the Madelung deformity of the forearm. SHOX mutations and pseudoautosomal region 1 deletions encompassing SHOX or its enhancers have been identified in approximately 60% of LWD and approximately 15% of idiopathic short stature (ISS) individuals. Recently SHOX duplications have been described in LWD/ISS but also in individuals with other clinical manifestations, thus questioning their pathogenicity.
The objective of the study was to investigate the pathogenicity of SHOX duplications in LWD and ISS.
Multiplex ligation-dependent probe amplification is routinely used in our unit to analyze for SHOX/pseudoautosomal region 1 copy number changes in LWD/ISS referrals. Quantitative PCR, microsatellite marker, and fluorescence in situ hybridization analysis were undertaken to confirm all identified duplications.
During the routine analysis of 122 LWD and 613 ISS referrals, a total of four complete and 10 partial SHOX duplications or multiple copy number (n > 3) as well as one duplication of the SHOX 5' flanking region were identified in nine LWD and six ISS cases. Partial SHOX duplications appeared to have a more deleterious effect on skeletal dysplasia and height gain than complete SHOX duplications. Importantly, no increase in SHOX copy number was identified in 340 individuals with normal stature or 104 overgrowth referrals.
MLPA analysis of SHOX/PAR1 led to the identification of partial and complete SHOX duplications or multiple copies associated with LWD or ISS, suggesting that they may represent an additional class of mutations implicated in the molecular etiology of these clinical entities.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) is a relatively common birth defect often associated with additional congenital anomalies such as vertebral, anal, cardiovascular, renal and limb defects, the so-called VACTERL association. Yet, little is known about the causal genetic factors. Rare case reports of gastrointestinal anomalies in children with triple X syndrome prompted us to survey the incidence of structural and numerical changes of chromosome X in patients with EA/TEF. All available (n=269) karyotypes of our large (321) EA/TEF patient cohort were evaluated for X-chromosome anomalies. If sufficient DNA material was available, we determined genome-wide copy number profiles with SNP array and identified subtelomeric aberrations on the difficult to profile PAR1 region using telomere-multiplex ligation-dependent probe amplification. In addition, we investigated X-chromosome inactivation (XCI) patterns and mode of inheritance of detected aberrations in selected patients. Three EA/TEF patients had an additional maternally inherited X chromosome. These three female patients had normal random XCI patterns. Two male EA/TEF patients had small inherited duplications of the XY-linked SHOX (Short stature HOmeoboX-containing) locus. Patients were small for gestational age at birth (<P5) and had additional, mostly VACTERL associated, anomalies. Triple X syndrome is rarely described in patients with EA/TEF and no duplications of the SHOX gene were reported so far in these patients. As normal patterns of XCI were seen, overexpression of X-linked genes that escape XCI, such as the SHOX gene, could be pathogenic by disturbing developmental pathways.European Journal of Human Genetics advance online publication, 8 January 2014; doi:10.1038/ejhg.2013.295.
    European journal of human genetics: EJHG 01/2014; DOI:10.1038/ejhg.2013.295 · 4.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: Genetics plays a major role in determining an individual's height. Although there are many monogenic disorders that lead to perturbations in growth and result in short stature, there is still no consensus as to the role that genetic diagnostics should play in the evaluation of a child with short stature. Evidence Acquisition: A search of Pubmed was performed focusing on the genetic diagnosis of short stature as well as on specific diagnostic subgroups included in this article. Consensus guidelines were reviewed. Evidence Synthesis: There are a multitude of rare genetic causes of severe short stature. There is no high quality evidence to define the optimal approach to the genetic evaluation of short stature. We review genetic etiologies of a number of diagnostic subgroups and propose an algorithm for genetic testing based on these subgroups. Conclusion: Advances in genomic technologies are revolutionizing the diagnostic approach to short stature. Endocrinologists must become facile with the use of genetic testing in order to identify the various monogenic disorders that present with short stature.
    Journal of Clinical Endocrinology &amp Metabolism 06/2014; 99(9):jc20141506. DOI:10.1210/jc.2014-1506 · 6.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.
    PLoS ONE 01/2014; 9(1):e83104. DOI:10.1371/journal.pone.0083104 · 3.53 Impact Factor