Addition of Acai (Euterpe oleracea) to Cigarettes has a Protective Effect against Emphysema in Mice

Laboratório de Farmacologia Cardiovascular e Plantas Medicinais, Departamento de Farmacologia e Psicobiologia, IBRAG - UERJ, Rio de Janeiro, Brazil.
Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association (Impact Factor: 2.61). 12/2010; 49(4):855-63. DOI: 10.1016/j.fct.2010.12.007
Source: PubMed

ABSTRACT Chronic inhalation of cigarette smoke (CS) induces emphysema by the damage contributed by oxidative stress during inhalation of CS. Ingestion of açai fruits (Euterpe oleracea) in animals has both antioxidant and anti-inflammatory effects. This study compared lung damage in mice induced by chronic (60-day) inhalation of regular CS and smoke from cigarettes containing 100mg of hydroalcoholic extract of açai berry stone (CS + A). Sham smoke-exposed mice served as the control group. Mice were sacrificed on day 60, bronchoalveolar lavage was performed, and the lungs were removed for histological and biochemical analyses. Histopathological investigation showed enlargement of alveolar space in CS mice compared to CS + A and control mice. The increase in leukocytes in the CS group was higher than the increase observed in the CS + A group. Oxidative stress, as evaluated by antioxidant enzyme activities, mieloperoxidase, glutathione, and 4-hydroxynonenal, was reduced in mice exposed to CS+A versus CS. Macrophage and neutrophil elastase levels were reduced in mice exposed to CS + A versus CS. Thus, the presence of açai extract in cigarettes had a protective effect against emphysema in mice, probably by reducing oxidative and inflammatory reactions. These results raise the possibility that addition of açaí extract to normal cigarettes could reduce their harmful effects.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our aim was to investigate the effects of four different statins on acute lung inflammation induced by cigarette smoke (CS). C57BL/6 male mice were divided into a control group (sham-smoked) and mice exposed to CS from 12 cigarettes/day for 5 days. Mice exposed to CS were grouped and treated with vehicle (i.p.), atorvastatin (10 mg/kg), pravastatin (10 mg/kg), rosuvastatin (5 mg/kg), or simvastatin (20 mg/kg). Treatment with statins differentially improved the pulmonary response when compared to the CS group. Atorvastatin and pravastatin demonstrated slightly effects on inflammation and oxidative stress. Rosuvastatin demonstrated the best anti-inflammatory effect, whereas simvastatin demonstrated the best antioxidant response.
    Inflammation 03/2014; 37(5). DOI:10.1007/s10753-014-9860-y · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress occurs when free radicals and other reactive species overwhelm the availability of antioxidants. Reactive oxygen species (ROS), reactive nitrogen species, and their counterpart antioxidant agents are essential for physiological signaling and host defense, as well as for the evolution and persistence of inflammation. When their normal steady state is disturbed, imbalances between oxidants and antioxidants may provoke pathological reactions causing a range of nonrespiratory and respiratory diseases, particularly chronic obstructive pulmonary disease (COPD). In the respiratory system, ROS may be either exogenous from more or less inhalative gaseous or particulate agents such as air pollutants, cigarette smoke, ambient high-altitude hypoxia, and some occupational dusts, or endogenously generated in the context of defense mechanisms against such infectious pathogens as bacteria, viruses, or fungi. ROS may also damage body tissues depending on the amount and duration of exposure and may further act as triggers for enzymatically generated ROS released from respiratory, immune, and inflammatory cells. This paper focuses on the general relevance of free radicals for the development and progression of both COPD and pulmonary emphysema as well as novel perspectives on therapeutic options. Unfortunately, current treatment options do not suffice to prevent chronic airway inflammation and are not yet able to substantially alter the course of COPD. Effective therapeutic antioxidant measures are urgently needed to control and mitigate local as well as systemic oxygen bursts in COPD and other respiratory diseases. In addition to current therapeutic prospects and aspects of genomic medicine, trending research topics in COPD are presented.
    International Journal of COPD 01/2014; 9:1207-1224. DOI:10.2147/COPD.S51226
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acai (acai or assai) is one of the Amazon's most popular functional foods and widely used in the world. There are many benefits to its alleged use in the growing market for nutraceuticals. The acai extracts have a range of polyphenolic components with antioxidant properties, some of those present in greater quantity are orientin, isoorientin and vanillic acid, as well as anthocyanins cyanidin-3-glucoside and cyanidin-3-rutinoside. The presence of these substances is linked mainly to the antioxidant, anti- inflammatory, anti-proliferative and cardioprotective activities. Importantly, there are two main species of the Euterpe genus which produce acai. There are several differences between them but they are still quite unknown, from literature to producers and consumers. In this review are highlighted the chemical composition, botanical aspects, pharmacological, marketing and nutrition of these species based on studies published in the last five years in order to unify the current knowledge and dissimilarities between them. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Food Chemistry 02/2015; 179. DOI:10.1016/j.foodchem.2015.01.055 · 3.26 Impact Factor