Article

Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices

Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA.
Developmental Biology (Impact Factor: 3.64). 02/2011; 350(2):311-22. DOI: 10.1016/j.ydbio.2010.11.033
Source: PubMed

ABSTRACT Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement.

0 Followers
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell polarity and asymmetry play a fundamental role in embryo development. The unequal segregation of determinants, cues, and activities is the major event in the differentiation of cell fate and function in all multicellular organisms. In oocytes, polarity and asymmetry in the distribution of different molecules are prerequisites for the progression and proper outcome of embryonic development. The mouse oocyte, like the oocytes of other mammals, seems to apply a less stringent strategy of polarization than other vertebrates. The mouse embryo undergoes a regulative type of development, which permits the full rectification of development even if the embryo loses up to half of its cells or its size is experimentally doubled during the early stages of embryogenesis. Such pliability is strongly related to the proper oocyte polarization before fertilization. Thus, the molecular mechanisms leading to the development and maintenance of oocyte polarity must be included in any fundamental understanding of the principles of embryo development. In this chapter, we provide an overview of current knowledge regarding the development and maintenance of polarity and asymmetry in the distribution of organelles and molecules in the mouse oocyte. Curiously, the mouse oocyte becomes polarized at least twice during ontogenesis; the question of how this phenomenon is achieved and what role it might play is addressed in this chapter.
    Results and problems in cell differentiation 01/2012; 55:23-44. DOI:10.1007/978-3-642-30406-4_2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vitrification is a fast and effective method to cryopreserve ovarian tissue, but it might influence mitochondrial activity and affect gene expression to cause persistent alterations in the proteome of oocytes that grow and mature following cryopreservation. In part one of the study, the inner mitochondrial membrane potential (Ψ(mit)) of JC-1 stained oocytes from control and CryoTop vitrified pre-antral follicles was analyzed by confocal microscopy at Day 0, or after culture of follicles for 1 or 12 days. In part two, proteins of in vivo grown germinal vesicle (GV) oocytes were subjected to proteome analysis by SDS polyacrylamide gel electrophoresis, tryptic in-gel digestion of gel slices, and one-dimensional-nano-liquid chromatography of peptides on a multi-dimensional-nano-liquid chromatography system followed by mass spectrometry (LC-MS/MS) and Uniprot Gene Ontology (GO) analysis. In part three, samples containing the protein amount of 40 GV and metaphase II (MII) oocytes, respectively, from control and vitrified pre-antral follicles cultured for 12 or 13 days were subjected to 2D DIGE saturation labeling and separated by isoelectric focusing and SDS gel electrophoresis (2D DIGE), followed by DeCyder(Tm) analysis of spot patterns in three independent biological replicates. Statistical and hierarchical cluster analysis was employed to compare control and vitrified groups. (i) Mitochondrial inner membrane potential differs significantly between control and vitrified GV oocytes at Day 0 and Day 1, but is similar at Day 12 of culture. (ii) LC-MS/MS analysis of SDS gel fractionated protein lysates of 988 mouse GV oocytes revealed identification of 1123 different proteins with a false discovery rate of <1%. GO analysis assigned 811 proteins to the 'biological process' subset. Thirty-five percent of the proteins corresponded to metabolic processes, about 15% to mitochondrion and transport, each, and close to 8% to oxidation-reduction processes. (iii) From the 2D-saturation DIGE analysis 1891 matched spots for GV-stage and 1718 for MII oocyte proteins were detected and the related protein abundances in vitrified and control oocytes were quantified. None of the spots was significantly altered in intensity, and hierarchical cluster analysis as well as histograms of p and q values suggest that vitrification at the pre-antral stage does not significantly alter the proteome of GV or MII oocytes compared with controls. Vitrification appears to be associated with a significant transient increase in Ψ(mit) in oocyte mitochondria, which disappears when oocyte/cumulus cell apposition is restored upon development to the antral stage. The nano-LC-MS/MS analysis of low numbers of oocytes is useful to obtain information on relevant biological signaling pathways based on protein identifications. For quantitative comparisons, saturation 2D DIGE analysis is superior to LC-MS/MS due to its high sensitivity in cases where the biological material is very limited. Genetic background, age of the female, and/or stimulation protocol appear to influence the proteome pattern. However, the quantitative 2D DIGE approach provides evidence that vitrification does not affect the oocyte proteome after recovery from transient loss of cell-cell interactions, in vitro growth and in vitro maturation under tested conditions. Therefore, transient changes in mitochondrial activity by vitrification do not appear causal to persistent alterations in the mitochondrial or overall oocyte proteome.
    Human Reproduction 01/2012; 27(4):1096-111. DOI:10.1093/humrep/der453 · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unraveling molecular pathways responsible for regulation of early embryonic development is crucial for our understanding of female infertility. Maternal determinants that control the transition from oocyte to embryo are crucial molecules that govern developmental competence of the newly conceived zygote. We describe a series of defects that are triggered by a disruption of maternal lethal effect gene, Nlrp5. Previous studies have shown that Nlrp5 hypomorph embryos fail to develop beyond the two-cell stage. Despite its importance in preimplantation development, the mechanism by which the embryo arrest occurs remains unclear. We confirmed that Nlrp5 mutant and wild-type females possess comparable ovarian germ pool and follicular recruitment rates. However, ovulated oocytes lacking Nlrp5 have abnormal mitochondrial localization and increased activity in order to sustain physiological ATP content. This results in an accumulation of reactive oxygen species and increased cellular stress causing mitochondrial depletion. Compromised cellular state is also accompanied by increased expression of cell death inducer Bax and depletion of cytochrome c. However, neither genetic deletion (Bax/Nlrp5 double knockout) nor mimetic interference (BH4 domain or Bax inhibitory peptide) were sufficient to alleviate embryo demise caused by depletion of Nlrp5. We therefore conclude that lack of Nlrp5 in oocytes triggers premature activation of the mitochondrial pool, causing mitochondrial damage that cannot be rescued by inactivation of Bax.
    Biology of Reproduction 02/2012; 86(5):138, 1-10. DOI:10.1095/biolreprod.111.093583 · 3.45 Impact Factor
Show more

Preview

Download
1 Download
Available from