Article

Atom probe tomography characterization of heavily cold drawn pearlitic steel wire.

Institut für Materialphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.
Ultramicroscopy (Impact Factor: 2.47). 11/2010; 111(6):628-32. DOI: 10.1016/j.ultramic.2010.11.010
Source: PubMed

ABSTRACT Atom Probe Tomography (APT) was used to analyze the carbon distribution in a heavily cold drawn pearlitic steel wire with a true strain of 6.02. The carbon concentrations in cementite and ferrite were separately measured by a sub-volume method and compared with the literature data. It is found that the carbon concentration in ferrite saturates with strain. The carbon concentration in cementite decreases with the lamellar thickness, while the carbon atoms segregate at dislocations or cell/grain boundaries in ferrite. The mechanism of cementite decomposition is discussed in terms of the evolution of dislocation structure during severe plastic deformation.

0 Bookmarks
 · 
156 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atom-probe tomography (APT) and first-principle calculations are employed to investigate the role of Si on the partitioning behavior of Mn in pearlitic steel. Mn is experimentally observed to partition preferentially to cementite, while Si prefers to bcc α-Fe by APT. The partitioning ratio of Mn in SWRS87BM steel (i.e., 8.17±1.57) is more pronounced than that in SWRS82B steel (i.e., 3.66±0.44), which is attributed to the higher content of Si in the former than in the latter. First-principle calculations illustrate that Si atoms, which strongly partition to bcc α-Fe phase, repulse Mn atoms into cementite phase and increase the Mn partitioning ratio.
    Materials Letters 11/2014; 134:84–86. · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Grain boundaries influence mechanical, functional, and kinetic properties of metallic alloys. They can be manipulated via solute decoration enabling changes in energy, mobility, structure, and cohesion or even promoting local phase transformation. In the approach which we refer here to as ‘segregation engineering’ solute decoration is not regarded as an undesired phenomenon but is instead utilized to manipulate specific grain boundary structures, compositions and properties that enable useful material behavior. The underlying thermodynamics follow the adsorption isotherm. Hence, matrix-solute combinations suited for designing interfaces in metallic alloys can be identified by considering four main aspects, namely, the segregation coefficient of the decorating element; its effects on interface cohesion, energy, structure and mobility; its diffusion coefficient; and the free energies of competing bulk phases, precipitate phases or complexions. From a practical perspective, segregation engineering in alloys can be usually realized by a modest diffusion heat treatment, hence, making it available in large scale manufacturing.
    Current Opinion in Solid State and Materials Science 08/2014; · 5.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbon quantification and the standardisation in a pure cementite were conducted using pulsed-laser atom probe tomography (APT). The results were analysed to investigate a dependence on three distinct experimental parameters; the laser pulse energy, the cryogenic specimen temperature and the laser pulse frequency. All the measurements returned an apparent carbon content of 25.0 ±1.0 at%. Carbon content measurements showed no clear dependence on the cryogenic temperature or the laser pulse frequency. However, the results did demonstrate a strong correlation with the laser pulse energy. For lower laser pulse energies, the analysis returned carbon contents higher than the stoichiometric ratio. It was suggested that this effect is due to pile up of 56Fe++ at the detector and as a consequence there is a systematic preferential loss of these ions throughout the course of the experiment. Conversely, in experiments utilising higher laser pulse energies, it was found that the carbon contents were smaller than the stoichiometric ratio. In these experiments an increasing fraction of the larger carbon molecular ions (e.g. C5 ions) were detected as part of a multiple detection events, which could affect the quantification measurements.
    Ultramicroscopy 12/2014; · 2.47 Impact Factor

Full-text

Download
82 Downloads
Available from
May 16, 2014