Article

Balancing incompatible endoprosthetic design goals: a combined ingrowth and bone remodeling simulation.

Orthopaedic Research Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
Medical Engineering & Physics (Impact Factor: 1.84). 12/2010; 33(3):374-80. DOI: 10.1016/j.medengphy.2010.11.005
Source: PubMed

ABSTRACT In order to design a good cementless femoral implant many requirements need to be fulfilled. For instance, the range of micromotions at the bone-implant interface should not exceed a certain threshold and a good ratio between implant-bone stiffness that does not cause bone resorption, needs to be ensured. Stiff implants are known to evoke lower interface micromotions but at the same time they may cause extensive resorption of the surrounding bone. Composite stems with reduced stiffness give good remodeling results but implant flexibility is likely to evoke high micromotions proximally. Finding a good balance between these incompatible design goals is very challenging. The current study proposes a finite element methodology that employs subsequent ingrowth and remodeling simulations and can be of assistance when designing new implants. The results of our simulations for the Epoch stem were in a good agreement with the clinical data. The proposed implant design made of porous tantalum with an inner CoCrMo core performed slightly better with respect to the Epoch stem and considerably better with respect to a Ti alloy stem. Our combined ingrowth and remodeling simulation can be a useful tool when designing a new implant that well balances mentioned incompatible design goals.

0 Bookmarks
 · 
61 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Uncemented implants are dependent upon initial postoperative stability to gain bone ingrowth and secondary stability. The possibility to vary femoral offset and neck angles using modular necks in total hip arthroplasty increases the flexibility in the reconstruction of the geometry of the hip joint. The purpose of this study was to investigate and evaluate initial stability of an uncemented stem coupled to four different modular necks. Methods A cementless femoral stem was implanted in twelve human cadaver femurs and tested in a hip simulator with patient specific load for each patient corresponding to single leg stance and stair climbing activity. The stems were tested with four different modular necks; long, short, retro and varus. The long neck was used as reference in statistical comparisons. A micromotion jig was used to measure bone-implant movements, at two predefined levels. Findings A femoral stem coupled to a varus neck had the highest value of micromotion measured for stair climbing at the distal measurement level (60 μm). The micromotions measured with varus and retro necks were significantly larger than motions observed with the reference modular neck, p < 0.001. Interpretation The femoral stem evaluated in this study showed acceptable micromotion values for the investigated loading conditions when coupled to modular necks with different length, version and neck-shaft angle.
    Clinical biomechanics (Bristol, Avon) 01/2013; · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of bone mass distribution at proximal femur may contribute to understand the role of hip geometry on hip fracture risk. We examined how bone mineral density (BMD) of proximal femur adapts to inter individual variations in the femoral neck length (FNL), femoral neck width (FNW) and neck shaft angle (NSA). A parameterized and dimensionally scalable 3-D finite element model of a reference proximal femur geometry was incrementally adjusted to adopt physiological ranges at FNL (3.9-6.9 cm), FNW (2.9.0-3.46 cm), and NSA (109°-141º), yielding a set of femora with different geometries. The bone mass distribution for each femur was obtained with a suitable bone remodelling model. The BMDs at the integral femoral neck (FN) and at the intertrochanteric (ITR) region, as well as the BMD ratio of inferomedial to superolateral (IM:SL) regions of FN and BMD ratio of FN:ITR were used to represent bone mass distribution. Results revealed that longer FNLs present greater BMD (g/cm3) at the FN, mainly at the SL region, and at the ITR region. Wider FNs were associated with reduced BMD at the FN, particularly at the SL region, and at the ITR region. Larger NSAs up to 129° were associated with BMD diminutions at the FN and ITR regions and with increases of the IM:SL BMD ratio while NSAs larger than 129° resulted in decrease of the IM:SL BMD ratio. These findings suggest hip geometry as moderator of the mechanical loading influence on bone mass distribution at proximal femur with higher FNL favoring the BMD of FN and ITR regions and greater FNW and NSA having the opposite effect. Augmented values of FNL and FNW seem also to favor more the BMD at the superolateral than at the inferomedial FN region.
    Bone 01/2014; · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study assessed whether the Symax™ implant, a modification of the Omnifit(®) stem (in terms of shape, proximal coating and distal surface treatment), would yield improved bone remodelling in a clinical DEXA study, and if these results could be predicted in a finite element (FE) simulation study. In a randomized clinical trial, 2 year DEXA measurements between the uncemented Symax™ and Omnifit(®) stem (both n=25) showed bone mineral density (BMD) loss in Gruen zone 7 of 14% and 20%, respectively (p<0.05). In contrast, the FE models predicted a 28% (Symax™) and 26% (Omnifit(®)) bone loss. When the distal treatment to the Symax™ was not modelled in the simulation, bone loss of 35% was predicted, suggesting the benefit of this surface treatment for proximal bone maintenance. The theoretical concept for enhanced proximal bone loading by the Symax™, and the predicted remodelling pattern were confirmed by DEXA-results, but there was no quantitative match between clinical and FE findings. This was due to a simulation based on incomplete assumptions concerning the yet unknown biological and mechanical effects of the new coating and surface treatment. Study listed under ClinicalTrials.gov with number NCT01695213.
    Medical Engineering & Physics 12/2013; · 1.84 Impact Factor