Article

Transcriptome analyses based on genetic screens for Pax3 myogenic targets in the mouse embryo

CNRS URA 2578, Département de Biologie du Développement, Institut Pasteur, 25 Rue du Dr Roux, Paris, France.
BMC Genomics (Impact Factor: 4.04). 12/2010; 11:696. DOI: 10.1186/1471-2164-11-696
Source: PubMed

ABSTRACT Pax3 is a key upstream regulator of the onset of myogenesis, controlling progenitor cell survival and behaviour as well as entry into the myogenic programme. It functions in the dermomyotome of the somite from which skeletal muscle derives and in progenitor cell populations that migrate from the somite such as those of the limbs. Few Pax3 target genes have been identified. Identifying genes that lie genetically downstream of Pax3 is therefore an important endeavour in elucidating the myogenic gene regulatory network.
We have undertaken a screen in the mouse embryo which employs a Pax3GFP allele that permits isolation of Pax3 expressing cells by flow cytometry and a Pax3PAX3-FKHR allele that encodes PAX3-FKHR in which the DNA binding domain of Pax3 is fused to the strong transcriptional activation domain of FKHR. This constitutes a gain of function allele that rescues the Pax3 mutant phenotype. Microarray comparisons were carried out between Pax3GFP/+ and Pax3GFP/PAX3-FKHR preparations from the hypaxial dermomyotome of somites at E9.5 and forelimb buds at E10.5. A further transcriptome comparison between Pax3-GFP positive and negative cells identified sequences specific to myogenic progenitors in the forelimb buds. Potential Pax3 targets, based on changes in transcript levels on the gain of function genetic background, were validated by analysis on loss or partial loss of function Pax3 mutant backgrounds. Sequences that are up- or down-regulated in the presence of PAX3-FKHR are classified as somite only, somite and limb or limb only. The latter should not contain sequences from Pax3 positive neural crest cells which do not invade the limbs. Verification by whole mount in situ hybridisation distinguishes myogenic markers. Presentation of potential Pax3 target genes focuses on signalling pathways and on transcriptional regulation.
Pax3 orchestrates many of the signalling pathways implicated in the activation or repression of myogenesis by regulating effectors and also, notably, inhibitors of these pathways. Important transcriptional regulators of myogenesis are candidate Pax3 targets. Myogenic determination genes, such as Myf5 are controlled positively, whereas the effect of Pax3 on genes encoding inhibitors of myogenesis provides a potential brake on differentiation. In the progenitor cell population, Pax7 and also Hdac5 which is a potential repressor of Foxc2, are subject to positive control by Pax3.

Download full-text

Full-text

Available from: Takahiko Sato, Aug 11, 2015
0 Followers
 · 
191 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report expression of Pax3, an important regulator of skeletal muscle stem cell behaviour, in the brachial and femoral arteries of adult mice. In these contractile arteries of the limb, but not in the elastic arteries of the trunk, bands of GFP-positive cells were observed in Pax3(GFP/+) mice. Histological and biochemical examination of the vessels, together with clonal analysis after purification of Pax3-GFP-positive cells by flow cytometry, established their vascular smooth muscle identity. These blood-vessel-derived cells do not respond to inducers of other mesodermal cell types, such as bone, however, they can contribute to muscle fibre formation when co-cultured with skeletal muscle cells. This myogenic conversion depends on the expression of Pax3, but is rare and non-cell autonomous as it requires cell fusion. Myocardin, which promotes acquisition of a mature smooth muscle phenotype in these Pax3-GFP-positive cells, antagonises their potential for skeletal muscle differentiation. Genetic manipulation shows that myocardin is, however, positively regulated by Pax3, unlike genes for other myocardin-related factors, MRTFA, MRTFB or SRF. Expression of Pax3 overlaps with that reported for Msx2, which is required for smooth muscle differentiation of blood vessel-derived multipotent mesoangioblasts. These observations are discussed with respect to the origin and function of Pax3-expressing cells in blood vessels, and more general questions of cell fate determination and adult cell plasticity and reprogramming.
    Journal of Cell Science 12/2011; 124(Pt 23):3980-8. DOI:10.1242/jcs.085373 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although mesenchymal stem cells (MSCs) of distinct tissue origin have a large number of similarities and differences, it has not been determined so far whether tissue-resident MSCs are the progenies of one ancestor cell lineage or the results of parallel cell developmental events. Here we compared the expression levels of 177 genes in murine MSCs derived from adult and juvenile bone marrow and adult adipose tissue, as well as juvenile spleen, thymus, and aorta wall by quantitative real-time polymerase chain reaction and the results were partially validated at protein level. All MSC lines uniformly expressed a large set of genes including well-known mesenchymal markers, such as α-smooth muscle actin, collagen type I α-chain, GATA6, Mohawk, and vimentin. In contrast, pluripotency genes and the early mesodermal marker T-gene were not expressed. On the other hand, different MSC lines consistently expressed distinct patterns of Hox genes determining the positional identity of a given cell population. Moreover, MSCs of different origin expressed a few other transcription factors also reflecting their topological identity and so the body segment or organ to which they normally contributed in vivo: (1) thymus-derived cells specifically expressed Tbx5 and Pitx2; (2) spleen-derived MSCs were characterized with Tlx1 and Nkx2.5; (3) Pitx1 designated femoral bone marrow cells and (4) En2 appeared in aorta wall-derived MSCs. Thus, MSCs exhibited topographic identity and memory even after long-term cultivation in vitro. On the basis of these results, we suggest that postnatal MSCs isolated from different anatomical sites descend from precursor cells developing in the postsegmentation mesoderm.
    Stem cells and development 12/2011; 21(5):814-28. DOI:10.1089/scd.2011.0551 · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.
    International Journal of Molecular Sciences 12/2012; 13(12):16554-79. DOI:10.3390/ijms131216554 · 2.34 Impact Factor
Show more