Article

Chimeric tick-borne encephalitis/dengue virus is attenuated in Ixodes scapularis ticks and Aedes aegypti mosquitoes.

Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
Vector borne and zoonotic diseases (Larchmont, N.Y.) (Impact Factor: 2.53). 12/2010; 11(6):665-74. DOI: 10.1089/vbz.2010.0179
Source: PubMed

ABSTRACT In an effort to derive an efficacious live attenuated vaccine against tick-borne encephalitis, we generated a chimeric virus bearing the structural protein genes of a Far Eastern subtype of tick-borne encephalitis virus (TBEV) on the genetic background of recombinant dengue 4 (DEN4) virus. Introduction of attenuating mutations into the TBEV envelope protein gene, as well as the DEN4 NS5 protein gene and 3' noncoding region in the chimeric genome, results in decreased neurovirulence and neuroinvasiveness in mice, and restricted replication in mouse brain. Since TBEV and DEN4 viruses are transmitted in nature by ticks and mosquitoes, respectively, it was of interest to investigate the infectivity of the chimeric virus for both arthropod vectors. Therefore, parental and chimeric viruses were tested for growth in mosquito and tick cells and for oral infection in vivo. Although all chimeric viruses demonstrated moderate levels of replication in C6/36 mosquito cells, they were unable to replicate in ISE6 tick cells. Further, the chimeric viruses were unable to infect or replicate in Aedes aegypti mosquitoes and Ixodes scapularis tick larvae. The poor infectivity for both potential vectors reinforces the safety of chimeric virus-based vaccine candidates for the environment and for use in humans.

0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arthropod-borne viruses (arboviruses) are transmitted between vertebrate hosts and arthropod vectors. An inherently complex interaction among virus, vector, and the environment determines successful transmission of the virus. Once believed to be "flying syringes," recent advances in the field have demonstrated that mosquito genetics, microbiota, salivary components, and mosquito innate immune responses all play important roles in modulating arbovirus transmissibility. The literature on the interaction among virus, mosquito, and environment has expanded dramatically in the preceding decade and the utilization of next-generation sequencing and transgenic vector methodologies assuredly will increase the pace of knowledge acquisition in this field. This chapter outlines the interplay among the three factors in both direct physical and biochemical manners as well as indirectly through superinfection barriers and altered induction of innate immune responses in mosquito vectors. The culmination of the aforementioned interactions and the arms race between the mosquito innate immune response and the capacity of arboviruses to antagonize such a response ultimately results in the subjugation of mosquito cells for viral replication and subsequent transmission.
    Advances in Virus Research 01/2014; 89:39-83. DOI:10.1016/B978-0-12-800172-1.00002-1 · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among three main subtypes of the tick-borne encephalitis virus (TBEV), the Siberian subtype is currently dominant in a majority of the endemic regions of Russia. However, inactivated vaccines are based on TBEV strains of the heterologous Far Eastern or the European subtypes isolated 40–77 years ago. To analyze the efficacy of the available vaccines against currently prevailing TBEV isolates of the Siberian subtype, mice were immunized subcutaneously three times (one group per each vaccine). The expression of seven cytokine genes was determined using RT-PCR. Sera were studied using homologous and heterologous ELISA, hemagglutination inhibition (HI) and neutralization tests with TBEV strains of the Far Eastern, Siberian and European subtypes. Cross-protective efficacy of the vaccines was evaluated with the TBEV strain 2689 of Siberian subtype isolated from an ixodid tick from the Novosibirsk region, South-Western Siberia, Russia in 2010. The cytokine gene expression profile indicates a predominantly Th2 response due to exogenous antigen presentation. Titers for homologous combinations of vaccine strain and strain in ELISA, HI and neutralization tests exceeded those for heterologous antigen-antibody pairs. Despite antibody detection by means of ELISA, HI and neutralization tests, the mouse protection afforded by the vaccines differed significantly. Complete protection of mice challenged with 100 LD50 virus of the Siberian subtype was induced by the vaccine “Encevir” (“Microgen”, Tomsk, Russia). The minimal immunization doze (MID50) of “Encevir” protecting 50% of the mice was less than 0.0016 ml. Partial protective effect of vaccines produced in Moscow, Russia and Austria revealed MID50 within recommended intervals (0.001–0.017 ml). However, the MID50 for the vaccine “Encepur” (Novartis, Germany) 0.04 ml exceeded acceptable limits with total loss of mice immunized with vaccine diluted 32, 100 and 320 fold. These results suggest regular evaluation of TBEV vaccines in regions where heterologous virus subtypes prevail.
    Vaccine 05/2014; 32(25). DOI:10.1016/j.vaccine.2014.02.046 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundMost known flaviviruses, including West Nile virus (WNV), are maintained in natural transmission cycles between hematophagous arthropods and vertebrate hosts. Other flaviviruses such as Modoc virus (MODV) and Culex flavivirus (CxFV) have host ranges restricted to vertebrates and insects, respectively. The genetic elements that modulate the differential host ranges and transmission cycles of these viruses have not been identified.MethodsFusion polymerase chain reaction (PCR) was used to replace the capsid (C), premembrane (prM) and envelope (E) genes and the prM-E genes of a full-length MODV infectious cDNA clone with the corresponding regions of WNV and CxFV. Fusion products were directly transfected into baby hamster kidney-derived cells that stably express T7 RNA polymerase. At 4 days post-transfection, aliquots of each supernatant were inoculated onto vertebrate (BHK-21 and Vero) and mosquito (C6/36) cells which were then assayed for evidence of viral infection by reverse transcription-PCR, Western blot and plaque assay.ResultsChimeric virus was recovered in cells transfected with the fusion product containing the prM-E genes of WNV. The virus could infect vertebrate but not mosquito cells. The in vitro replication kinetics and yields of the chimeric virus were similar to MODV but the chimeric virus produced larger plaques. Chimeric virus was not recovered in cells transfected with any of the other fusion products.ConclusionsOur data indicate that genetic elements outside of the prM-E gene region of MODV condition its vertebrate-specific phenotype.
    Virology Journal 08/2014; 11(1):150. DOI:10.1186/1743-422X-11-150 · 2.09 Impact Factor