Epicatechin blocks pro-nerve growth factor (proNGF)-mediated retinal neurodegeneration via inhibition of p75 neurotrophin receptor expression in a rat model of diabetes [corrected].

Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
Diabetologia (Impact Factor: 6.88). 03/2011; 54(3):669-80. DOI: 10.1007/s00125-010-1994-3
Source: PubMed

ABSTRACT Accumulation of pro-nerve growth factor (NGF), the pro form of NGF, has been detected in neurodegenerative diseases. However, the role of proNGF in the diabetic retina and the molecular mechanisms by which proNGF causes retinal neurodegeneration remain unknown. The aim of this study was to elucidate the role of proNGF in neuroglial activation and to examine the neuroprotective effects of epicatechin, a selective inhibitor of tyrosine nitration, in an experimental rat model of diabetes.
Expression of proNGF and its receptors was examined in retinas from streptozotocin-induced diabetic rats, and in retinal Müller and retinal ganglion cells (RGCs). RGC death was assessed by TUNEL and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays in diabetic retinas and cell culture. Nitrotyrosine was determined using Slot-blot. Activation of the tyrosine kinase A (TrkA) receptor and p38 mitogen-activated protein kinase (p38MAPK) was assessed by western blot.
Diabetes-induced peroxynitrite impaired phosphorylation of TrkA-Y490 via tyrosine nitration, activated glial cells and increased expression of proNGF and its receptor, p75 neurotrophin receptor (p75(NTR)), in vivo and in Müller cells. These effects were associated with activation of p38MAPK, cleaved poly-(ADP-ribose) polymerase and RGC death. Treatment of diabetic animals with epicatechin (100 mg kg(-1) day(-1), orally) blocked these effects and restored neuronal survival. Co-cultures of RGCs with conditioned medium of activated Müller cells significantly reduced RGC viability (44%). Silencing expression of p75(NTR) by use of small interfering RNA protected against high glucose- and proNGF-induced apoptosis in RGC cultures.
Diabetes-induced peroxynitrite stimulates p75(NTR) and proNGF expression in Müller cells. It also impairs TrkA receptor phosphorylation and activates the p75(NTR) apoptotic pathway in RGCs, leading to neuronal cell death. These effects were blocked by epicatechin, a safe dietary supplement, suggesting its potential therapeutic use in diabetic patients.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into rats immediately after the operation for 3 consecutive days. Immunofluorescence, western blot assay and PCR detection revealed that the expression of the precursor form of nerve growth factor, nerve growth factor and the p75 neurotrophin receptor, and the mRNA expression of nerve growth factor and the p75 neurotrophin receptor, increased after acute ocular hypertension. The number of double-labeled CD11B- and precursor form of nerve growth factor-positive cells, glial fibrillary acidic protein- and p75 neurotrophin receptor-positive cells, glial fibrillary acidic protein- and caspase-3-positive cells in the retina markedly increased after acute ocular hypertension. The above-described expression decreased after minocycline treatment. These results suggested that minocycline inhibited the increased expression of the precursor form of nerve growth factor in microglia, the p75 neurotrophin receptor in astroglia, and protected cells from apoptosis.
    Neural Regeneration Research 02/2013; 8(4):320-7. · 0.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetic retinopathy (DR), a major ocular complication of diabetes, is a leading cause of blindness in US working age adults with limited treatments. Neurotrophins (NTs), a family of proteins essential for growth, differentiation and survival of retinal neurons, have emerged as potential players in the pathogenesis of DR. NTs can signal through their corresponding tropomyosin kinase related receptor to mediate cell survival or through the p75 neurotrophin receptor with the co-receptor, sortilin, to mediate cell death. This review focuses on the role of NGF, the first discovered NT, in the development of DR. Impaired processing of proNGF has been found in ocular fluids from diabetic patients as well as experimental models. Evidence from literature and our studies support the notion that NTs appear to play multiple potential roles in DR, hence, understanding their contribution to DR may lead to promising therapeutic approaches for this devastating disease.
    Expert Review of Ophthalmology 03/2014; 9(2).
  • Source
    Diabetes & metabolism journal 10/2014; 38(5):346-8.

Full-text (4 Sources)

Available from
May 19, 2014