Three Protein Cocktails Mediate Delayed-Type Hypersensitivity Responses Indistinguishable from That Elicited by Purified Protein Derivative in the Guinea Pig Model of Mycobacterium tuberculosis Infection

Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
Infection and immunity (Impact Factor: 3.73). 02/2011; 79(2):716-23. DOI: 10.1128/IAI.00486-10
Source: PubMed


Purified protein derivative (PPD) is a widely used reagent for the diagnosis of Mycobacterium tuberculosis infection. Recently, the molecular composition of PPD was defined, with hundreds of mycobacterial protein representatives making up PPD. Which, if any, of these specific products drive the potency of PPD remains in question. In this study, two proteins (DnaK and GroEL2) previously identified as dominant proteins in PPD were tested for the capacity to induce delayed-type hypersensitivity (DTH) responses in H37Rv-infected or BCG-vaccinated guinea pigs. These two proteins were used in pull-down assays to identify interacting PPD products. Six proteins were identified as interacting partners with DnaK and GroEL2, i.e., Rv0009, Rv0475, Rv0569, Rv0685, Rv2626c, and Rv2632c. These six proteins were tested alone and in combination with DnaK and GroEL2 for the capacity to induce a DTH response in the guinea pig model. From these studies, two cocktails, DnaK/GroEL2/Rv0009 and DnaK/GroEL2/Rv0685, were found to induce DTH responses in H37Rv-infected or BCG-vaccinated guinea pigs that were indistinguishable from DTH responses driven by a PPD injection. The mechanism by which DTH responses were induced was elucidated by histologic examination, analysis of activated CD4(+)/CD8(+) T cells, and cytokine mRNA expression at the site of the DTH response. PPD and the protein cocktails tested induced strong DTH responses in H37Rv-infected guinea pigs. Ex vivo phenotyping of T cells at the DTH site indicated that this response is mediated by activated CD4(+) and CD8(+) T cells, with increases in gamma interferon and tumor necrosis factor alpha, but not interleukin-10, at the site of the DTH response. Our results demonstrate for the first time that the PPD response can be mimicked at the molecular level with defined protein cocktails. The use of this defined product will allow a more thorough understanding of the DTH response and may provide a platform for more rapid and sensitive second-generation skin test reagents for the diagnosis of M. tuberculosis infection.

Download full-text


Available from: Karen M Dobos,
  • Source
    • "Endotoxin levels were assessed with a Limulus Amebocyte Lysate (LAL) assay as described previously (Yang et al., 2011) and samples were found to contain < 10 ng EU mg À1 protein. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis (Mtb) currently infects billions of people; many of whom are latently infection and at risk for reactivation. Mycobacterium bovis Bacille Calmette-Guerin (BCG) while approved as a vaccine, is unable to prevent reactivation of latent tuberculosis infection (LTBI). Subunit vaccines boosting BCG or given alone are being tested for efficacy in LTBI models. Alpha-crystallin (Acr, HspX), is a latency associated protein and subunit vaccine candidate. In this report, three HspX formulas (native and two recombinant variants) were used as vaccines in the guinea pig model of tuberculosis; none were protective during challenge with WT Mtb. However, recombinant HspX was protective in animals challenged with a strain of Mtb lacking hspX (X4-19), indicating protection was driven by molecules co-purifying with HspX or an adjuvant effect of recombinant HspX in this system. Mtb X4-19 was significantly less virulent than WT Mtb. Quantitative PCR and whole genome sequencing identified several genes (Rv2030c-Rv2032, Rv1062, Rv1771, Rv1907, and Rv3479) with altered expression that may contribute to loss of virulence. Physiological differences required for the establishment of Mtb infection in different hosts may affect the potential of subunit vaccines to elicit protection, supporting the need for rigorous biochemical and modeling analyses when developing tuberculosis vaccines.
    Pathogens and Disease 02/2014; 71(3). DOI:10.1111/2049-632X.12147 · 2.40 Impact Factor
  • Source
    • "Fractions containing purified HspX were pooled, exchanged into 10 mℳ ammonium bicarbonate, protein quantified by bicinchoninic acid assay, and the purity was confirmed by SDS–PAGE and staining with silver nitrate. Endotoxin levels were assessed with a Limulus amebocyte lysate assay as described previously40 and samples were found to contain less than 10 ng EU mg−1 protein. "
    [Show abstract] [Hide abstract]
    ABSTRACT: New approaches consisting of 'multistage' vaccines against (TB) are emerging that combine early antigenic proteins with latency-associated antigens. In this study, HspX was tested for its potential to elicit both short- and long-term protective immune responses. HspX is a logical component in vaccine strategies targeting protective immune responses against primary infection, as well as against reactivation of latent infection, because as previously shown, it is produced during latency, and as our studies show, it elicits protection within 30 days of infection. Recent studies have shown that the current TB vaccine, bacilli Calmette-Guerin (BCG), does not induce strong interferon-γ T-cell responses to latency-associated antigens like HspX, which may be in part why BCG fails to protect against reactivation disease. We therefore tested HspX protein alone as a prophylactic vaccine and as a boost to BCG vaccination, and found that HspX purified from M. tuberculosis cell lysates protected mice against aerosol challenge and improved the protective efficacy of BCG when used as a booster vaccine. Native HspX was highly immunogenic and protective, in a dose-dependent manner, in both short- and long-term infection models. Based on these promising findings, HspX was produced as a recombinant protein in E. coli, as this would enable facile purification; however, recombinant HspX (rHspX) alone consistently failed to protect against aerosol challenge. Incubation of rHspX with mycobacterial cell lysate and re-purification following incubation restored the capacity of the protein to confer protection. These data suggest the possibility that the native form may chaperone an immunogenic and protective antigen that is mycobacteria-specific.Immunology and Cell Biology advance online publication, 17 July 2012; doi:10.1038/icb.2012.34.
    Immunology and Cell Biology 07/2012; 90(10). DOI:10.1038/icb.2012.34 · 4.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The guinea pig model of tuberculosis is used extensively in different locations to assess the efficacy of novel tuberculosis vaccines during pre-clinical development. Two key assays are used to measure protection against virulent challenge: a 30 day post-infection assessment of mycobacterial burden and long-term post-infection survival and pathology analysis. To determine the consistency and robustness of the guinea pig model for testing vaccines, a comparative assessment between three sites that are currently involved in testing tuberculosis vaccines from external providers was performed. Each site was asked to test two "subunit" type vaccines in their routine animal model as if testing vaccines from a provider. All sites performed a 30 day study, and one site also performed a long-term survival/pathology study. Despite some differences in experimental approach between the sites, such as the origin of the Mycobacterium tuberculosis strain and the type of aerosol exposure device used to infect the animals and the source of the guinea pigs, the data obtained between sites were consistent in regard to the ability of each "vaccine" tested to reduce the mycobacterial burden. The observations also showed that there was good concurrence between the results of short-term and long-term studies. This validation exercise means that efficacy data can be compared between sites.
    Tuberculosis (Edinburgh, Scotland) 09/2011; 92(1):105-11. DOI:10.1016/ · 2.71 Impact Factor
Show more