SETD6 lysine methylation of RelA couples GLP activity at chromatin to tonic repression of NF-κB signaling

Department of Biology, Stanford University, Stanford, California, USA.
Nature Immunology (Impact Factor: 20). 01/2011; 12(1):29-36. DOI: 10.1038/ni.1968
Source: PubMed


Signaling via the methylation of lysine residues in proteins has been linked to diverse biological and disease processes, yet the catalytic activity and substrate specificity of many human protein lysine methyltransferases (PKMTs) are unknown. We screened over 40 candidate PKMTs and identified SETD6 as a methyltransferase that monomethylated chromatin-associated transcription factor NF-κB subunit RelA at Lys310 (RelAK310me1). SETD6-mediated methylation rendered RelA inert and attenuated RelA-driven transcriptional programs, including inflammatory responses in primary immune cells. RelAK310me1 was recognized by the ankryin repeat of the histone methyltransferase GLP, which under basal conditions promoted a repressed chromatin state at RelA target genes through GLP-mediated methylation of histone H3 Lys9 (H3K9). NF-κB-activation-linked phosphorylation of RelA at Ser311 by protein kinase C-ζ (PKC-ζ) blocked the binding of GLP to RelAK310me1 and relieved repression of the target gene. Our findings establish a previously uncharacterized mechanism by which chromatin signaling regulates inflammation programs.

Download full-text


Available from: Uwe Schaefer,
  • Source
    • "In dendritic cells, 1,25(OH)2D3 inhibits IL-12 expression through targeting the NFκB pathway [57]; by directly suppresses RelB transcription [58]. In addition, it was reported that epigenetic regulation is essential to NF-kB-p65 transcriptional activity via lysine methylation [59,60]. We also found that pretreatment of hMSCs with 1,25(OH)2D3 followed by MRSA stimulation significantly blocked NF-κB-p65 nuclear translocation and inflammatory cytokines synthesis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA) is the predominant cause of bone infection. Toll like receptors (TLRs) are an important segments of host response to infection and are expressed by a variety of cells including human mesenchymal stem cells (hMSCs). The active form of Vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has potent immunoregulatory properties, but the mechanism remains poorly understood. The genomic action of 1,25(OH)2D3 is mediated by vitamin D receptor (VDR), hormone-regulated transcription factor. VDR interacts with co-activators and co-repressors are associated with chromatin histone modifications and transcriptional regulation. The aim of our study is to explore MRSA-induced TLRs-mediated pro-inflammatory cytokines expression in hMSCs. Further, we hypothesized that 1,25(OH)2D3 inhibits MRSA-induced cytokines synthesis in hMSCs via inhibition of NF-[cyrillic small letter ka]B transcription factor. Finally, we explored the regulatory role of 1,25(OH)2D3 in MRSA-mediated global epigenetic histone H3 mark, such as, trimethylated histone H3 lysine 9 (H3K9me3), which is linked to gene silencing. Quantitative PCR data revealed that MRSA-infection predominantly induced expression of TLRs 1, 2, 6, NR4A2, and inflammatory cytokines IL-8, IL-6, TNFalpha in hMSCs. MRSA-mediated TLR ligands reduced osteoblast differentiation and increased hMSCs proliferation, indicating the disrupted multipotency function of hMSCs. Pretreatment of 1,25(OH)2D3 followed by MRSA co-culture inhibited nuclear translocation of NF-[cyrillic small letter ka]B-p65, reduced expression of NR4A2 and pro-inflammatory cytokines IL-8, IL-6, and TNFalpha in hMSCs. Further, NF-kappaB-p65, VDR, and NR4A2 were present in the same nuclear protein complex, indicating that VDR is an active part of the nuclear protein complexes for transcriptional regulation. Finally, 1,25(OH)2D3 activated VDR, restores the global level of H3K9me3, to repress MRSA-stimulated inflammatory cytokine IL-8 expression. Pretreatment of 5-dAZA, DNA methylatransferases (Dnmts) inhibitor, dramatically re-expresses 1,25(OH)2D3-MRSA-mediated silenced IL-8 gene. This data indicates that TLR 1, 2, and 6 can be used as markers for localized S. aureus bone infection. 1,25(OH)2D3-VDR may exhibits its anti-inflammatory properties in MRSA-stimulated infection by inhibiting nuclear translocation of NF-kB-p65 and transcripts of IL-8, IL-6, TNFalpha, and NR4A2 in hMSCs. Finally, 1,25(OH)2D3-activated VDR, acting as an epigenetic regulator, inhibits synthesis of cytokines in MRSA-stimulated infection by restoring the global level of H3K9me3, a histone H3 mark for gene silencing.
    BMC Cell Biology 03/2014; 15(1):11. DOI:10.1186/1471-2121-15-11 · 2.34 Impact Factor
  • Source
    • "A combination of these activities in immune cells ultimately results in the strengthening of pro-inflammatory pathways and the weakening of anti-inflammatory mechanisms. For example, disease-linked expression of KDM6B, a histone methyltransferase responsible for eliminating a repressive epigenetic signal (that is, histone H3 K27 trimethylation), is involved in macrophage activation [27], and repression of the SETD6 gene, which encodes a known negative regulator of NF-κB, leads to runaway activity of this transcription factor [28]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: An increasing number of studies show that besides the inherited genetic architecture (that is, genomic DNA), various environmental factors significantly contribute to the etiology of rheumatoid arthritis. Epigenetic factors react to external stimuli and form bridges between the environment and the genetic information-harboring DNA. Epigenetic mechanisms are implicated in the final interpretation of the encoded genetic information by regulating gene expression, and alterations in their profile influence the activity of the immune system. Overall, epigenetic mechanisms further increase the well-known complexity of rheumatoid arthritis by providing additional subtle contributions to rheumatoid arthritis susceptibility. Although there are controversies regarding the involvement of epigenetic and genetic factors in rheumatoid arthritis etiology, it is becoming obvious that the two systems (genetic and epigenetic) interact with each other and are ultimately responsible for rheumatoid arthritis development. Here, epigenetic factors and mechanisms involved in rheumatoid arthritis are reviewed and new, potential therapeutic targets are discussed.
    BMC Medicine 02/2014; 12(1):35. DOI:10.1186/1741-7015-12-35 · 7.25 Impact Factor
  • Source
    • "KMT6 was recently shown to be overexpressed in RA FLSs [25] (Table 1), and this may result in elevated levels of H3K27me3, a histone post-translational modification associated with RA autoantibodies (discussed in more detail in a subsequent section). In addition, levels of a novel KMT called SETD6 have been shown to be decreased in the PBMCs of patients with RA or JIA compared with controls [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatic disease can loosely be described as any painful condition affecting the loco-motor system, including joints, muscles, connective tissues, and soft tissues around the joints and bones. There is a wide spectrum of rheumatic diseases, many of which involve autoimmunity, including systemic lupus erythematosus and rheumatoid arthritis. A significant body of evidence now links aberrant epigenetic regulation of gene expression with rheumatic disease and points toward the use of epigenetic targeting agents as potential new treatment options, particularly for those conditions associated with an autoimmune element. In this perspective, I will briefly cover the current knowledge surrounding this area in the field of rheumatology.
    Arthritis research & therapy 03/2013; 15(2):207. DOI:10.1186/ar4167 · 3.75 Impact Factor
Show more