Article

Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency.

UPMC Univ Paris 06, IFR14, Paris F-75013, France.
Human Molecular Genetics (Impact Factor: 6.68). 02/2011; 20(4):694-704. DOI: 10.1093/hmg/ddq515
Source: PubMed

ABSTRACT Selenoprotein N (SelN) deficiency causes a group of inherited neuromuscular disorders termed SEPN1-related myopathies (SEPN1-RM). Although the function of SelN remains unknown, recent data demonstrated that it is dispensable for mouse embryogenesis and suggested its involvement in the regulation of ryanodine receptors and/or cellular redox homeostasis. Here, we investigate the role of SelN in satellite cell (SC) function and muscle regeneration, using the Sepn1(-/-) mouse model. Following cardiotoxin-induced injury, SelN expression was strongly up-regulated in wild-type muscles and, for the first time, we detected its endogenous expression in a subset of mononucleated cells by immunohistochemistry. We show that SelN deficiency results in a reduced basal SC pool in adult skeletal muscles and in an imperfect muscle restoration following a single injury. A dramatic depletion of the SC pool was detected after the first round of degeneration and regeneration that totally prevented subsequent regeneration of Sepn1(-/-) muscles. We demonstrate that SelN deficiency affects SC dynamics on isolated single fibres and increases the proliferation of Sepn1(-/-) muscle precursors in vivo and in vitro. Most importantly, exhaustion of the SC population was specifically identified in muscle biopsies from patients with mutations in the SEPN1 gene. In conclusion, we describe for the first time a major physiological function of SelN in skeletal muscles, as a key regulator of SC function, which likely plays a central role in the pathophysiological mechanism leading to SEPN1-RM.

Download full-text

Full-text

Available from: Pascale Guicheney, Jul 05, 2015
0 Followers
 · 
164 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although statins remain the cornerstone of lipid-lowering therapy for reducing the burden of atherosclerotic vascular disease, their administration has been associated with muscle-related adverse effects, including myalgia and rhabdomyolysis. Such adverse events are probably due to reduced antioxidant defenses associated with fewer intermediate metabolites in the cholesterol synthesis pathway. We hypothesize that the concomitant inhibition of xanthine oxidase via coadministration of allopurinol with statins could diminish reactive oxygen species (ROS)-related muscle damage, which would have in turn have positive effects on both the incidence of muscle-related adverse events and cardiovascular outcomes. Accordingly, inhibition of xanthine oxidase has been previously shown to be effective for reducing biomarkers of muscle damage following exercise in professional athletes. Because of the widespread statin utilization and increasing trends in their therapeutic use in atherosclerotic vascular diseases, the proposed strategy could have important clinical implications for reducing statin-induced myalgia and rhabdomyolysis.
    Atherosclerosis 12/2014; 239(1). DOI:10.1016/j.atherosclerosis.2014.12.055 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Distinct cell populations with regenerative capacity have been reported to contribute to myofibres after skeletal muscle injury, including non-satellite cells as well as myogenic satellite cells. However, the relative contribution of these distinct cell types to skeletal muscle repair and homeostasis and the identity of adult muscle stem cells remain unknown. We generated a model for the conditional depletion of satellite cells by expressing a human diphtheria toxin receptor under control of the murine Pax7 locus. Intramuscular injection of diphtheria toxin during muscle homeostasis, or combined with muscle injury caused by myotoxins or exercise, led to a marked loss of muscle tissue and failure to regenerate skeletal muscle. Moreover, the muscle tissue became infiltrated by inflammatory cells and adipocytes. This localised loss of satellite cells was not compensated for endogenously by other cell types, but muscle regeneration was rescued after transplantation of adult Pax7(+) satellite cells alone. These findings indicate that other cell types with regenerative potential depend on the presence of the satellite cell population, and these observations have important implications for myopathic conditions and stem cell-based therapeutic approaches.
    Development 09/2011; 138(17):3647-56. DOI:10.1242/dev.067587 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Micronutrients are essential for optimal human health. However, in some cases, raising intake by supplementation has not proven to be beneficial and there is even some evidence that supplementation may increase disease risk, highlighting the importance of assessing the functional status of micronutrients. Techniques such as gene microarrays and single-nucleotide polymorphism analysis have the potential to examine effects of micronutrient intake on patterns of gene expression and inter-individual variation in micronutrient metabolism. Recent genomic research related to selenium (Se) provides examples illustrating how studies of functional single-nucleotide polymorphism and gene expression patterns can reveal novel biomarkers of micronutrient function. Both in vitro and in vivo experiments show that there are functionally relevant polymorphisms in genes encoding glutathione peroxidases 1, 3 and 4, selenoprotein P, selenoprotein S and the 15 kDa selenoprotein. Disease association studies investigating these gene variants have so far been relatively small but an association of a polymorphism in the selenoprotein S gene with colorectal cancer risk has been replicated in two distinct populations. Future disease association studies should examine effects of multiple variants in combination with nutritional status. Gene microarray studies indicate that changes in Se intake alter expression of components of inflammatory, stress response and translation pathways. Our hypothesis is that Se intake and genetic factors have linked effects on stress response, inflammation and apoptotic pathways. Combining such data in a systems biology approach has the potential to identify both biomarkers of micronutrients status and sub-group populations at particular risk.
    Proceedings of The Nutrition Society 05/2011; DOI:10.1017/S0029665111000115 · 4.94 Impact Factor

Similar Publications