The cholinergic system and hippocampal plasticity.

School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
Behavioural brain research (Impact Factor: 3.22). 12/2010; 221(2):505-14. DOI: 10.1016/j.bbr.2010.11.037
Source: PubMed

ABSTRACT Acetylcholine is an essential excitatory neurotransmitter in the central nervous system and undertakes a vital role in cognitive function. Consequently, there is ample evidence to suggest the involvement of both nicotinic and muscarinic acetylcholine receptors in the modulation of synaptic plasticity, which is believed to be the molecular correlate of learning and memory. In the hippocampus in particular, multiple subtypes of both nicotinic and muscarinic receptors are present at presynaptic and postsynaptic loci of both principal neurons and inhibitory interneurons, where they exert profound bi-directional influences on synaptic transmission. Further evidence points to a role for cholinergic activation in the induction and maintenance of synaptic plasticity, and key influences on hippocampal network oscillations. The present review examines these multiple roles of acetylcholine in hippocampal plasticity.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined whether a non-selective antagonist of nAChRs mecamylamine and selective antagonists of α4β2-containing nAChRs dihydro-β-erythroidine (DHβE) and α7-containing nAChRs methyllycaconitine (MLA) affect learning performance and synaptic efficiency in the CA1 area of the hippocampus of freely moving rats during the memory consolidation period. Adult male Wistar rats received mecamylamine (0.5 mg/kg), DHβE (1 mg/kg), MLA (2 mg/kg) or saline immediately after training in a passive avoidance task. Memory retention was examined 24 h after the training. The changes in the latency of the first entry into a dark compartment of a test chamber were chosen as a criterion of learning. The ability of nAChRs antagonists to induce changes in the basal level of focal potentials (fEPSP, field excitatory postsynaptic potential) was estimated before training (baseline), 90 min after the training (consolidation period) and 24 h after the training (retention period). We found that in untrained rats mecamylamine, DHβE and MLA diminished the amplitude of fEPSP within the first 90 min after the injection; similar effect was observed in DHβE- and MLA-treated trained animals. These suppressive effects of DHβE and MLA were associated with memory loss. In contrast, mecamylamine, when applied to trained animals, tended to increase latency to enter the dark chamber and did not influence fEPSP during first 90 min after injection. Thus, the nAChRs antagonists with different selectivity induced different changes in fEPSP and behavior which suggests that nAChRs with different subunit composition are diversely involved in memory consolidation.
    Neuroscience 11/2014; DOI:10.1016/j.neuroscience.2014.10.038 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Molecular manipulations and targeted pharmacological studies provide a compelling picture of which nicotinic receptor subtypes are where in the central nervous system (CNS) and what happens if one activates or deletes them. However, understanding the physiological contribution of nicotinic receptors to endogenous acetylcholine (ACh) signaling in the CNS has proven a more difficult problem to solve. In this review, we provide a synopsis of the literature on the use of optogenetic approaches to control the excitability of cholinergic neurons and to examine the role of CNS nicotinic ACh receptors (nAChRs). As is often the case, this relatively new technology has answered some questions and raised others. Overall, we believe that optogenetic manipulation of cholinergic excitability in combination with some rigorous pharmacology will ultimately advance our understanding of the many functions of nAChRs in the brain.
    Reviews in the neurosciences 07/2014; DOI:10.1515/revneuro-2014-0032 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cholinergic and GABAergic fibers of the medial septal/diagonal band of Broca (MS/ DB) area project to the hippocampus and constitute the septo-hippocampal pathway, which has been proven to play a role in learning and memory. In addition, the hippocampus has bidirectional connections with the septum so that to self-regulate of cholinergic input. The activity of septal and hippocampal neurons is modulated by several neurotransmitter systems including glutamatergic neurons from the entorhinal cortex, serotonergic fibers from the raphe nucleus, dopaminergic neurons from the ventral tegmental area (VTA), histaminergic cells from the tuberomammillary nucleus and adrenergic fibers from the locus coeruleus (LC). Thus, changes in the glutamatergic, serotonergic and other systems-mediated transmission in the MS/DB may influence cholinergic or GABAergic transmission in the hippocampus.
    Autonomic neuroscience: basic & clinical 01/2013; 4(1):5-23. · 1.82 Impact Factor