Article

MicroRNAs Both Promote and Antagonize Longevity in C. elegans

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 USA.
Current biology: CB (Impact Factor: 9.92). 12/2010; 20(24):2159-68. DOI: 10.1016/j.cub.2010.11.015
Source: PubMed

ABSTRACT aging is under genetic control in C. elegans, but the mechanisms of life-span regulation are not completely known. MicroRNAs (miRNAs) regulate various aspects of development and metabolism, and one miRNA has been previously implicated in life span.
here we show that multiple miRNAs change expression in C. elegans aging, including novel miRNAs, and that mutations in several of the most upregulated miRNAs lead to life-span defects. Some act to promote normal life span and stress resistance, whereas others inhibit these phenomena. We find that these miRNAs genetically interact with genes in the DNA damage checkpoint response pathway and in the insulin signaling pathway.
our findings reveal that miRNAs both positively and negatively influence life span. Because several miRNAs upregulated during aging regulate genes in conserved pathways of aging and thereby influence life span in C. elegans, we propose that miRNAs may play important roles in stress response and aging of more complex organisms.

0 Followers
 · 
162 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs (miRNAs) are a family of small, non-coding RNAs, which provides broad silencing activity of mRNA targets in a sequence-dependent fashion. This review explores the hypothesis that the miRNA machinery is intimately linked with the cellular stress pathway and apparatus. Stress signaling potentially alters the function of the miRNA-bioprocessing core components and decompensates regulation. In addition, dysregulation of miRNA activity renders the cell more prone to stress and emerges as a new pathway for age-related insults and diseases, such as neurodegeneration.
    The EMBO Journal 05/2014; DOI:10.15252/embj.201488142 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyrethroids are the major class of insecticides used for mosquito control. Excessive and improper use of insecticides, however, has resulted in pyrethroid resistance, which has become a major obstacle for mosquito control. The development of pyrethroid resistance is a complex process involving many genes, and information on post-transcription regulation of pyrethroid resistance is lacking. In this study, we extracted RNA from mosquitoes in various life stages (fourth-instar larvae, pupae, male and female adult mosquitoes) from deltamethrin-sensitive (DS) and resistant (DR) strains. Using illumina sequencing, we obtained 13760296 and 12355472 reads for DS-strains and DR-strains, respectively. We identified 100 conserved miRNAs and 42 novel miRNAs derived from 21 miRNA precursors in Culex pipiens. After normalization, we identified 28 differentially expressed miRNAs between the two strains. Additionally, we found that cpp-miR-71 was significant down regulated in female adults from the DR-strain. Based on microinjection and CDC Bottle Bioassay data, we found that cpp-miR-71 may play a contributing role in deltamethrin resistance. The present study provides the firstly large-scale characterization of miRNAs in Cu. pipiens and provides evidence of post-transcription regulation. The differentially expressed miRNAs between the two strains are expected to contribute to the development of pyrethroid resistance.
    Insect Biochemistry and Molecular Biology 11/2014; 55. DOI:10.1016/j.ibmb.2014.10.007 · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Filarial nematodes are important pathogens in the tropics transmitted to humans via the bite of blood sucking arthropod vectors. The molecular mechanisms underpinning survival and differentiation of these parasites following transmission are poorly understood. microRNAs are small non-coding RNA molecules that regulate target mRNAs and we set out to investigate whether they play a role in the infection event. microRNAs differentially expressed during the early post-infective stages of Brugia pahangi L3 were identified by microarray analysis. One of these, bpa-miR-5364, was selected for further study as it is upregulated ~12-fold at 24 hours post-infection, is specific to clade III nematodes, and is a novel member of the let-7 family, which are known to have key developmental functions in the free-living nematode Caenorhabditis elegans. Predicted mRNA targets of bpa-miR-5364 were identified using bioinformatics and comparative genomics approaches that relied on the conservation of miR-5364 binding sites in the orthologous mRNAs of other filarial nematodes. Finally, we confirmed the interaction between bpa-miR-5364 and three of its predicted targets using a dual luciferase assay. These data provide new insight into the molecular mechanisms underpinning the transmission of third stage larvae of filarial nematodes from vector to mammal. This study is the first to identify parasitic nematode mRNAs that are verified targets of specific microRNAs and demonstrates that post-transcriptional control of gene expression via stage-specific expression of microRNAs may be important in the success of filarial infection.
    BMC Genomics 04/2015; 16(1):331. DOI:10.1186/s12864-015-1536-y · 4.04 Impact Factor