Prognostic vs predictive molecular biomarkers in colorectal cancer: is KRAS and BRAF wild type status required for anti-EGFR therapy?

Department of Surgical and Oncological Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 127, Palermo, Italy.
Cancer Treatment Reviews (Impact Factor: 6.47). 11/2010; 36 Suppl 3:S56-61. DOI: 10.1016/S0305-7372(10)70021-9
Source: PubMed

ABSTRACT An important molecular target for metastatic CRC treatment is the epidermal growth factor receptor (EGFR). Many potential biomarkers predictive of response to anti-EGFR monoclonal antibodies (cetuximab and panitumumab) have been retrospectively evaluated, including EGFR activation markers and EGFR ligands activation markers. With regard to the "negative predictive factors" responsible for primary or intrinsic resistance to anti-EGFR antibodies a lot of data are now available. Among these, KRAS mutations have emerged as a major predictor of resistance to panitumumab or cetuximab in the clinical setting and several studies of patients receiving first and subsequent lines of treatment have shown that those with tumors carrying KRAS mutations do not respond to EGFR-targeted monoclonal antibodies or show any survival benefit from such treatments. The role of B-RAF mutations, mutually exclusive with KRAS mutations, in predicting resistance to anti-EGFR mAbs is not yet consolidated. It therefore appears that BRAF mutations may play a strong negative prognostic role and only a slight role in resistance to anti-EGFR Abs.

Download full-text


Available from: Antonio Russo, Jun 21, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ISPOR Oncology Special Interest Group formed a working group at the end of 2010 to develop standards for conducting oncology health services research using secondary data. The first mission of the group was to develop a checklist focused on issues specific to selection of a sample of oncology patients using a secondary data source. A systematic review of the published literature from 2006 to 2010 was conducted to characterize the use of secondary data sources in oncology and inform the leadership of the working group prior to the construction of the checklist. A draft checklist was subsequently presented to the ISPOR membership in 2011 with subsequent feedback from the larger Oncology Special Interest Group also incorporated into the final checklist. The checklist includes six elements: identification of the cancer to be studied, selection of an appropriate data source, evaluation of the applicability of published algorithms, development of custom algorithms (if needed), validation of the custom algorithm, and reporting and discussions of the ascertainment criteria. The checklist was intended to be applicable to various types of secondary data sources, including cancer registries, claims databases, electronic medical records, and others. This checklist makes two important contributions to oncology health services research. First, it can assist decision makers and reviewers in evaluating the quality of studies using secondary data. Second, it highlights methodological issues to be considered when researchers are constructing a study cohort from a secondary data source.
    Value in Health 06/2013; 16(4):655-669. DOI:10.1016/j.jval.2013.02.006 · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The genomics era has yielded great advances in the understanding of cancer biology. At the same time, the immense complexity of the cancer genome has been revealed, as well as a striking heterogeneity at the whole-genome (or omics) level that exists between even histologically similar tumors. The vast accrual and public availability of multi-omics databases with associated clinical annotation including tumor histology, patient response, and outcome are a rich resource that has the potential to lead to rapid translation of high-throughput omics to improved overall survival. We focus on the unique advantages of a multidimensional approach to genomic analysis in this new high-throughput omics age and discuss the implications of the changing cancer demographic to translational omics research.
    Genome Research 02/2012; 22(2):188-95. DOI:10.1101/gr.124354.111 · 13.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations of RAS genes are critical events in the pathogenesis of different human tumors and Ras proteins represent a major clinical target for the development of specific inhibitors to use as anticancer agents. Here we present RasGRF1-derived peptides displaying both in vitro and in vivo Ras inhibitory properties. These peptides were designed on the basis of the down-sizing of dominant negative full-length RasGRF1 mutants. The over-expression of these peptides can revert the phenotype of K-RAS transformed mouse fibroblasts to wild type, as monitored by several independent biological readouts, including Ras-GTP intracellular levels, ERK activity, morphology, proliferative potential and anchorage independent growth. Fusion of the RasGRF1-derived peptides with the Tat protein transduction domain allows their uptake into mammalian cells. Chemically synthesized Tat-fused peptides, reduced to as small as 30 residues on the basis of structural constraints, retain Ras inhibitory activity. These small peptides interfere in vitro with the GEF catalyzed nucleotide dissociation and exchange on Ras, reduce cell proliferation of K-RAS transformed mouse fibroblasts, and strongly reduce Ras-dependent IGF-I-induced migration and invasion of human bladder cancer cells. These results support the use of RasGRF1-derived peptides as model compounds for the development of Ras inhibitory anticancer agents.
    Biotechnology advances 05/2011; 30(1):233-43. DOI:10.1016/j.biotechadv.2011.05.011 · 8.91 Impact Factor