Fibrillin assemblies: extracellular determinants of tissue formation and fibrosis

Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA. .
Fibrogenesis & Tissue Repair 12/2010; 3:24. DOI: 10.1186/1755-1536-3-24
Source: PubMed

ABSTRACT The extracellular matrix (ECM) plays a key role in tissue formation, homeostasis and repair, mutations in ECM components have catastrophic consequences for organ function and therefore, for the fitness and survival of the organism. Collagen, fibrillin and elastin polymers represent the architectural scaffolds that impart specific mechanic properties to tissues and organs. Fibrillin assemblies (microfibrils) have the additional function of distributing, concentrating and modulating local transforming growth factor (TGF)-β and bone morphogenetic protein (BMP) signals that regulate a plethora of cellular activities, including ECM formation and remodeling. Fibrillins also contain binding sites for integrin receptors, which induce adaptive responses to changes in the extracellular microenvironment by reorganizing the cytoskeleton, controlling gene expression, and releasing and activating matrix-bound latent TGF-β complexes. Genetic evidence has indicated that fibrillin-1 and fibrillin-2 contribute differently to the organization and structural properties of non-collagenous architectural scaffolds, which in turn translate into discrete regulatory outcomes of locally released TGF-β and BMP signals. Additionally, the study of congenital dysfunctions of fibrillin-1 has yielded insights into the pathogenesis of acquired connective tissue disorders of the connective tissue, such as scleroderma. On the one hand, mutations that affect the structure or expression of fibrillin-1 perturb microfibril biogenesis, stimulate improper latent TGF-β activation, and give rise to the pleiotropic manifestations in Marfan syndrome (MFS). On the other hand, mutations located around the integrin-binding site of fibrillin-1 perturb cell matrix interactions, architectural matrix assembly and extracellular distribution of latent TGF-β complexes, and lead to the highly restricted fibrotic phenotype of Stiff Skin syndrome. Understanding the molecular similarities and differences between congenital and acquired forms of skin fibrosis may therefore provide new therapeutic tools to mitigate or even prevent disease progression in scleroderma and perhaps other fibrotic conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Arterial aging is a cornerstone of organismal aging. The central arterial wall structurally and functionally remodels under chronic proinflammatory stress over a lifetime. The low-grade proinflammation that accompanies advancing age causes arterial wall thickening and stiffening. These structural and functional alterations are consequences of adverse molecular and cellular events, e.g. an increase in local angiotensin II signaling that induces an inflammatory phenotypic shift of endothelial and smooth muscle cells. Thus, interventions to restrict proinflammatory signaling are a rational approach to delay or prevent age-associated adverse arterial remodeling. © 2014 S. Karger AG, Basel.
    Gerontology 08/2014; 60(6). DOI:10.1159/000362548 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanical properties of the microenvironment regulate cell morphology and differentiation within complex organs. However, methods to restore morphogenesis and differentiation in organs in which compliance is suboptimal are poorly understood. We used mechanosensitive mouse salivary gland organ explants grown at different compliance levels together with deoxycholate extraction and immunocytochemistry of the intact, assembled matrices to examine the compliance-dependent assembly and distribution of the extracellular matrix and basement membrane in explants grown at permissive or non-permissive compliance. Extracellular matrix and basement membrane assembly were disrupted in the glands grown at low compliance compared to those grown at high compliance, correlating with defective morphogenesis and decreased myoepithelial cell differentiation. Extracellular matrix and basement membrane assembly as well as myoepithelial differentiation were restored by addition of TGFβ1 and by mechanical rescue, and mechanical rescue was prevented by inhibition of TGFβ signaling during the rescue. We detected a basal accumulation of active integrin β1 in the differentiating myoepithelial cells that formed a continuous peripheral localization around the proacini and in clefts within active sites of morphogenesis in explants that were grown at high compliance. The pattern and levels of integrin β1 activation together with myoepithelial differentiation were interrupted in explants grown at low compliance but were restored upon mechanical rescue or with application of exogenous TGFβ1. These data suggest that therapeutic application of TGFβ1 to tissues disrupted by mechanical signaling should be examined as a method to promote organ remodeling and regeneration.
    Matrix Biology 01/2015; 12. DOI:10.1016/j.matbio.2015.01.020 · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10,337 cases and 11,174 controls (OR=1.10; p-value=3.79×10(-5)). Thus, it appears that rare and common variants in a single gene - FBN2 - can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.
    Human Molecular Genetics 06/2014; DOI:10.1093/hmg/ddu276 · 6.68 Impact Factor

Preview (3 Sources)

Available from