Balancing forces in the photoperiodic control of flowering.

IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Av. San Martín 4453, 1417, Buenos Aires, Argentina.
Photochemical and Photobiological Sciences (Impact Factor: 2.92). 12/2010; 10(4):451-60. DOI: 10.1039/c0pp00252f
Source: PubMed

ABSTRACT In many plant species, the duration of the daily exposure to light (photoperiod) provides a seasonal cue that helps to adjust flowering time to the most favourable time of the year. In Arabidopsis thaliana, the core mechanism of acceleration of flowering by long days involves the stabilisation of the CONSTANS (CO) protein by light reaching the leaves, the direct induction of the expression of FLOWERING LOCUS T (FT) by CO and the migration of FT to the apex to promote flowering. In rice (Oryza sativa), the promotion of flowering by short days depends on the interplay between light conditions, and the genes Grain number, plant height and heading date locus 7 (Ghd7) and Early heading date 1 (Ehd1). In both cases, other day length-induced changes reinforce the core photoperiodic pathway of promotion of flowering. However, there are regulators of flowering time, quantitatively less important than the core pathways but still significant, which impact in the opposite direction, i.e. favouring rice flowering under long days or Arabidopsis flowering under short days. We show, for instance, that short days enhance leaf expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (SPL3), which stimulates Arabidopsis flowering under these conditions. We propose that fine tuning of flowering time depends on the balance of a hierarchy of multiple points of action of photoperiod on the network controlling flowering.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a plant shoot develops, it produces different types of leaves, buds, and internodes, and eventually acquires the capacity to produce structures involved in sexual reproduction. Morphological and anatomical traits that change in coordinated fashion at a predictable time in vegetative development allow this process to be divided into several more-or-less discrete phases; the transition between these phases is termed "vegetative phase change." Vegetative phase change is regulated by a decrease in the expression of the related microRNAs, miR156, and miR157, which act by repressing the expression of squamosa promoter binding protein/SBP-like (SBP/SPL) transcription factors. SBP/SPL proteins regulate a wide variety of processes in shoot development, including flowering time and inflorescence development. Answers to long-standing questions about the relationship between vegetative and reproductive maturation have come from genetic analyses of the transcriptional and posttranscriptional regulatory networks in which these proteins are involved. Studies conducted over several decades indicate that carbohydrates have a significant effect on phase-specific leaf traits, and recent research suggests that sugar may be the leaf signal that promotes vegetative phase change.
    Current Topics in Developmental Biology 01/2013; 105:125-52. DOI:10.1016/B978-0-12-396968-2.00005-1 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two aspects of light are very important for plant development: the length of the light phase or photoperiod and the quality of incoming light. Photoperiod detection allows plants to anticipate the arrival of the next season, whereas light quality, mainly the red to far-red ratio (R:FR), is an early signal of competition by neighbouring plants. phyB represses flowering by antagonising CO at the transcriptional and post-translational levels. A low R:FR decreases active phyB and consequently increases active CO, which in turn activates the expression of FT, the plant florigen. Other phytochromes like phyD and phyE seem to have redundant roles with phyB. PFT1, the MED25 subunit of the plant Mediator complex, has been proposed to act in the light-quality pathway that regulates flowering time downstream of phyB. However, whether PFT1 signals through CO and its specific mechanism are unclear. Here we show that CO-dependent and -independent mechanisms operate downstream of phyB, phyD and phyE to promote flowering, and that PFT1 is equally able to promote flowering by modulating both CO-dependent and -independent pathways. Our data are consistent with the role of PFT1 as an activator of CO transcription, and also of FT transcription, in a CO-independent manner. Our transcriptome analysis is also consistent with CO and FT genes being the most important flowering targets of PFT1. Furthermore, comparison of the pft1 transcriptome with transcriptomes after fungal and herbivore attack strongly suggests that PFT1 acts as a hub, integrating a variety of interdependent environmental stimuli, including light quality and jasmonic acid-dependent defences.
    The Plant Journal 02/2012; 69(4):601-12. DOI:10.1111/j.1365-313X.2011.04815.x · 6.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of neighboring vegetation modifies the light environment experienced by plants, generating signals that are perceived by phytochromes and cryptochromes. These signals cause large changes in plant body form and function, including enhanced growth of the hypocotyl and petioles, a more erect position of the leaves and early flowering in Arabidopsis thaliana. Collectively, these so-called shade-avoidance responses tend to reduce the degree of current or future shade by neighbors. Shade light signals increase the abundance of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 proteins, promote the synthesis and redirection of auxin, favor the degradation of DELLA proteins and increase the expression of auxin, gibberellins and brassinosteroid-promoted genes, among other events downstream the photoreceptors. Selectively disrupting these events by genetic or pharmacological approaches affects shade-avoidance responses with an intensity that depends on the developmental context and the environment. Shade-avoidance responses provide a model to investigate the signaling networks used by plants to take advantage of the cues provided by the environment to adjust to the challenges imposed by the environment itself.
    The Arabidopsis Book 01/2012; 10:e0157. DOI:10.1199/tab.0157

Full-text (2 Sources)

Available from
May 27, 2014