A Systems Biology Approach Uncovers Cellular Strategies Used by Methylobacterium extorquens AM1 During the Switch from Multi- to Single-Carbon Growth

Department of Chemical Engineering, University of Washington, Seattle, Washington, USA.
PLoS ONE (Impact Factor: 3.23). 11/2010; 5(11):e14091. DOI: 10.1371/journal.pone.0014091
Source: PubMed


When organisms experience environmental change, how does their metabolic network reset and adapt to the new condition? Methylobacterium extorquens is a bacterium capable of growth on both multi- and single-carbon compounds. These different modes of growth utilize dramatically different central metabolic pathways with limited pathway overlap.
This study focused on the mechanisms of metabolic adaptation occurring during the transition from succinate growth (predicted to be energy-limited) to methanol growth (predicted to be reducing-power-limited), analyzing changes in carbon flux, gene expression, metabolites and enzymatic activities over time. Initially, cells experienced metabolic imbalance with excretion of metabolites, changes in nucleotide levels and cessation of cell growth. Though assimilatory pathways were induced rapidly, a transient block in carbon flow to biomass synthesis occurred, and enzymatic assays suggested methylene tetrahydrofolate dehydrogenase as one control point. This "downstream priming" mechanism ensures that significant carbon flux through these pathways does not occur until they are fully induced, precluding the buildup of toxic intermediates. Most metabolites that are required for growth on both carbon sources did not change significantly, even though transcripts and enzymatic activities required for their production changed radically, underscoring the concept of metabolic setpoints.
This multi-level approach has resulted in new insights into the metabolic strategies carried out to effect this shift between two dramatically different modes of growth and identified a number of potential flux control and regulatory check points as a further step toward understanding metabolic adaptation and the cellular strategies employed to maintain metabolic setpoints.

9 Reads
  • Source
    • "The growth pattern suggested that cells utilized methanol and succinate simultaneously; as was previously observed in AM1 as well [52]. Since growth on succinate is energy-limited and growth on methanol is reducing-power limited [52], [53], it is likely that growth and yield on methanol and succinate is greater because the combination compensates for limitations posed by each substrate in isolation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Methylobacterium extorquens AM1, a strain serendipitously isolated half a century ago, has become the best-characterized model system for the study of aerobic methylotrophy (the ability to grow on reduced single-carbon compounds). However, with 5 replicons and 174 insertion sequence (IS) elements in the genome as well as a long history of domestication in the laboratory, genetic and genomic analysis of M. extorquens AM1 face several challenges. On the contrary, a recently isolated strain - M. extorquens PA1- is closely related to M. extorquens AM1 (100% 16S rRNA identity) and contains a streamlined genome with a single replicon and only 20 IS elements. With the exception of the methylamine dehydrogenase encoding gene cluster (mau), genes known to be involved in methylotrophy are well conserved between M. extorquens AM1 and M. extorquens PA1. In this paper we report four primary findings regarding methylotrophy in PA1. First, with a few notable exceptions, the repertoire of methylotrophy genes between PA1 and AM1 is extremely similar. Second, PA1 grows faster with higher yields compared to AM1 on C1 and multi-C substrates in minimal media, but AM1 grows faster in rich medium. Third, deletion mutants in PA1 throughout methylotrophy modules have the same C1 growth phenotypes observed in AM1. Finally, the precision of our growth assays revealed several unexpected growth phenotypes for various knockout mutants that serve as leads for future work in understanding their basis and generality across Methylobacterium strains.
    PLoS ONE 09/2014; 9(9):e107887. DOI:10.1371/journal.pone.0107887 · 3.23 Impact Factor
  • Source
    • "The parameter σ2 specifies this cost without differentiating between high and low affinity: in (2), ξ(c i k ) is 0 for c i k =0 and 1 otherwise, distinguishing only between zero and non-zero affinity. As a typical example of such a cost, when the methylotroph Methylobacterium extorquens switches to growth on methanol (from its more usual succinate substrate), it needs to reset the metabolic pathway even though the two pathways are very modular [48]). As this resetting takes a few hours, it results in a fixed cost of switching. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Speciation is driven by many different factors. Among those are trade-offs between different ways an organism utilizes resources, and these trade-offs can constrain the manner in which selection can optimize traits. Limited migration among allopatric populations and species interactions can also drive speciation, but here we ask if trade-offs alone are sufficient to drive speciation in the absence of other factors. Results We present a model to study the effects of trade-offs on specialization and adaptive radiation in asexual organisms based solely on competition for limiting resources, where trade-offs are stronger the greater an organism’s ability to utilize resources. In this model resources are perfectly substitutable, and fitness is derived from the consumption of these resources. The model contains no spatial parameters, and is therefore strictly sympatric. We quantify the degree of specialization by the number of ecotypes evolved and the niche breadth of the population, and observe that these are sensitive to resource influx and trade-offs. Resource influx has a strong effect on the degree of specialization, with a clear transition between minimal diversification at high influx and multiple species evolving at low resource influx. At low resource influx the degree of specialization further depends on the strength of the trade-offs, with more ecotypes evolving the stronger trade-offs are. The specialized organisms persist through negative frequency-dependent selection. In addition, by analyzing one of the evolutionary radiations in greater detail we demonstrate that a single mutation alone is not enough to establish a new ecotype, even though phylogenetic reconstruction identifies that mutation as the branching point. Instead, it takes a series of additional mutations to ensure the stable coexistence of the new ecotype in the background of the existing ones. Conclusions Trade-offs are sufficient to drive the evolution of specialization in sympatric asexual populations. Without trade-offs to restrain traits, generalists evolve and diversity decreases. The observation that several mutations are required to complete speciation, even when a single mutation creates the new species, highlights the gradual nature of speciation and the importance of phyletic evolution.
    BMC Evolutionary Biology 05/2014; 14(1):113. DOI:10.1186/1471-2148-14-113 · 3.37 Impact Factor
  • Source
    • "The oxidation of methanol into biomass proceeds via the highly toxic intermediate, formaldehyde, and is complex, requiring over 100 enzymes [20]. A sequenced genome [21], genetic tools [22-26], optimized growth conditions [27], metabolic models [28], and extensive knowledge of both C1 and multi-C metabolism [29] all make AM1 the ideal organism for studies of methylotrophy in the lab, as well as an emerging system for experimental evolution [30-33]. Aside from AM1, related methylobacteria are known for their roles in the plant microbiome [34-37], the biodegradation of toxic chemicals like chloromethane [38] and dichloromethane [39], and their potential for use in industrial applications [40,41]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A common assumption of microorganisms is that laboratory stocks will remain genetically and phenotypically constant over time, and across laboratories. It is becoming increasingly clear, however, that mutations can ruin strain integrity and drive the divergence or "domestication" of stocks. Since its discovery in 1960, a stock of Methylobacterium extorquens AM1 ("AM1") has remained in the lab, propagated across numerous growth and storage conditions, researchers, and facilities. To explore the extent to which this lineage has diverged, we compared our own "Modern" stock of AM1 to a sample archived at a culture stock center shortly after the strain's discovery. Stored as a lyophilized sample, we hypothesized that this Archival strain would better reflect the first-ever isolate of AM1 and reveal ways in which our Modern stock has changed through laboratory domestication or other means. Using whole-genome re-sequencing, we identified some 29 mutations - including single nucleotide polymorphisms, small indels, the insertion of mobile elements, and the loss of roughly 36 kb of DNA - that arose in the laboratory-maintained Modern lineage. Contrary to our expectations, Modern was both slower and less fit than Archival across a variety of growth substrates, and showed no improvement during long-term growth and storage. Modern did, however, outperform Archival during growth on nutrient broth, and in resistance to rifamycin, which was selected for by researchers in the 1980s. Recapitulating selection for rifamycin resistance in replicate Archival populations showed that mutations to RNA polymerase B (rpoB) substantially decrease growth in the absence of antibiotic, offering an explanation for slower growth in Modern stocks. Given the large number of genomic changes arising from domestication (28), it is somewhat surprising that the single other mutation attributed to purposeful laboratory selection accounts for much of the phenotypic divergence between strains. These results highlight the surprising degree to which AM1 has diverged through a combination of unintended laboratory domestication and purposeful selection for rifamycin resistance. Instances of strain divergence are important, not only to ensure consistency of experimental results, but also to explore how microbes in the lab diverge from one another and from their wild counterparts.
    BMC Microbiology 01/2014; 14(1):2. DOI:10.1186/1471-2180-14-2 · 2.73 Impact Factor
Show more

Preview (2 Sources)

9 Reads
Available from