Article

Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil.

Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Korea.
Journal of Microbiology and Biotechnology (Impact Factor: 1.32). 11/2010; 20(11):1577-84.
Source: PubMed

ABSTRACT In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate (S2O3) oxidation, the production of ammonia (NH3), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1- aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated saltstressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Full-text

Available from: Puneet Chauhan, May 24, 2015
7 Followers
 · 
750 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In arid ecosystems environmental factors such as geoclimatic conditions and agricultural practices are of major importance in shaping the diversity and functionality of plant-associated bacterial communities. Assessing the influence of such factors is a key to understand (i) the driving forces determining the shape of root-associated bacterial communities and (ii) the plant growth promoting (PGP) services they provide. Desert oasis environment was chosen as model ecosystem where agriculture is possible by the microclimate determined by the date palm cultivation. The bacterial communities in the soil fractions associated with the root system of date palms cultivated in seven oases in Tunisia were assessed by culture-independent and dependent approaches. According to 16S rRNA gene PCR-DGGE fingerprinting, the shapes of the date palm rhizosphere bacterial communities correlate with geoclimatic features along a north-south aridity transect. Despite the fact that the date palm root bacterial community structure was strongly influenced by macroecological factors, the potential rhizosphere services reflected in the PGP traits of isolates screened in vitro were conserved among the different oases. Such services were exerted by the 83% of the screened isolates. The comparable numbers and types of PGP traits indicate their importance in maintaining the plant functional homeostasis despite the different environmental selection pressures.
    01/2015; 2015:153851. DOI:10.1155/2015/153851
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Agricultural practices affect the bacterial community structure in soil. It was hypothesized that agricultural practices would also affect the bacteria involved in the degradation of crop residue. Soil was sampled from four different agricultural practices, i.e. conventional agriculture on the flat or on beds, or conservation agriculture on the flat or on beds. Cultivating crops on the flat is done traditionally, but cultivating crops on beds was introduced so as to avoid water logging during the rainy season and its potential negative effect on yields. Soil from these four treatments was amended in the laboratory with maize residue (Zea mays L.) or its neutral detergent fibre (NDF) fraction, mostly consisting of (hemi) cellulose, and incubated aerobically for 14 days. Maize residue was applied to soil as it is left in the field in conservation agriculture and NDF was added to study which bacteria were favoured by application of (hemi) cellulose. Soil was incubated aerobically while the carbon mineralization and the bacterial population were monitored. On the one hand, the relative abundance of phylotypes belonging to bacterial groups that preferred low nutrient environments was higher in soil with conservation agriculture (e.g. Acidobacteria 17.6%, Planctomycetes 1.7% and Verrucomicrobia 1.5%) compared to conventional practices (Acidobacteria 11.8%, Planctomycetes 0.9% and Verrucomicrobia 0.4%). On the other hand, the relative abundance of phylotypes belonging to bacterial groups that preferred nutrient rich environments, such as Actinobacteria, showed an opposite trend. It was 11.9% in conservation agriculture and 16.2% in conventional practices. The relative abundance of Arthrobacter (Actinobacteria) and Bacillales more than doubled when maize residue was applied to soil compared to the unamended soil and that of Actinomycetales when maize or NDF was applied. Application of organic material reduced the relative abundance of a wide range of bacterial groups, e.g. Acidobacteria, Bacteroidetes, Planctomycetes and Verrucomicrobia. It was found that application of organic material favoured the same bacterial groups that were more abundant in the soil cultivated conventionally while it reduced those that were favoured in conservation agriculture
    Applied Soil Ecology 06/2015; 90. DOI:10.1016/j.apsoil.2015.01.010 · 2.21 Impact Factor
  • Source