A tale of tailless.

Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, N.J., USA.
Developmental Neuroscience (Impact Factor: 2.45). 12/2010; 33(1):1-13. DOI: 10.1159/000321585
Source: PubMed

ABSTRACT Drosophila Tailless(Tll) and its vertebrate homologue Tlx are conserved orphan nuclear receptors specifically expressed in the eye and the forebrain. Tll and Tlx act primarily as transcriptional repressors through their interactions with transcriptional corepressors, Atrophin family proteins, and histone-tail/chromatin-modifying factors such as lysine-specific histone demethylase 1 and histone deacetylases. The functional importance of Tll and Tlx is made apparent by the recent discovery that they are expressed in neural stem cells (NSCs) and are required for self-renewal of these cells in both Drosophila and the mouse. This review provides a snapshot of current knowledge about Tll and Tlx and their transcriptional network, which maintains NSCs in developing and adult animals.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Target of rapamycin (TOR) signaling is a nutrient-sensing pathway controlling metabolism and lifespan. Although TOR signaling can be activated by a metabolite of diacylglycerol (DAG), phosphatidic acid (PA), the precise genetic mechanism through which DAG metabolism influences lifespan remains unknown. DAG is metabolized to either PA via the action of DAG kinase or 2-arachidonoyl-sn-glycerol by diacylglycerol lipase (DAGL). Here, we report that in Drosophila and Caenorhabditis elegans, overexpression of diacylglycerol lipase (DAGL/inaE/dagl-1) or knockdown of diacylglycerol kinase (DGK/rdgA/dgk-5) extends lifespan and enhances response to oxidative stress. Phosphorylated S6 kinase (p-S6K) levels are reduced following these manipulations, implying the involvement of TOR signaling. Conversely, DAGL/inaE/dagl-1 mutants exhibit shortened lifespan, reduced tolerance to oxidative stress, and elevated levels of p-S6K. Additional results from genetic interaction studies are consistent with the hypothesis that DAG metabolism interacts with TOR and S6K signaling to affect longevity and oxidative stress resistance. These findings highlight conserved metabolic and genetic pathways that regulate aging.
    Aging cell 05/2014; 13(4). DOI:10.1111/acel.12232 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fruit fly Drosophila melanogaster is a great model system in developmental biology studies and related disciplines. In a historical perspective, I focus on the formation of the Drosophila segmental body plan using a comparative approach. I highlight the evolutionary trend of increasing complexity of the molecular segmentation network in arthropods that resulted in an incredible degree of complexity at the gap gene level in derived Diptera. There is growing evidence that Drosophila is a highly derived insect, and we are still far from fully understanding the underlying evolutionary mechanisms that led to its complexity. In addition, recent data have altered how we view the transcriptional regulatory mechanisms that control segmentation in Drosophila. However, these observations are not all bad news for the field. Instead, they stimulate further study of segmentation in Drosophila and in other species as well. To me, these seemingly new Drosophila paradigms are very challenging ones.
    genesis 08/2012; 50(8):585-98. DOI:10.1002/dvg.22019 · 2.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior studies suggest that non-canonical proteolipid protein (PLP) gene expression occurs during development in non-myelinating neurons as well as myelinating oligodendroglia in mammalian brain. To assess this possibility in neostriatum, a region of uncertain PLP gene expression in neurons, morphological and electrophysiological tools were used to determine phenotypes of cells with activation of a PLP promoter transgene during the early postnatal period in mice. PLP gene expression is evident in both neuronal and oligodendroglial phenotypes in developing neostriatum, a conclusion based on three novel observations: (1) An enhanced green fluorescent protein (EGFP) reporter of PLP promoter activation was localized in two distinct populations of cells, which exhibit collective, developmental differences of morphological and electrophysiological characteristics in accord with neuronal and oligodendroglial phenotypes of neostriatal cells found during the early postnatal period in both transgenic and wild-type mice. (2) The EGFP reporter of PLP promoter activation was appropriately positioned to serve as a regulator of PLP gene expression. It colocalized with native PLP proteins in both neuronal and oligodendroglial phenotypes; however, only soma-restricted PLP protein isoforms were found in the neuronal phenotype, while classic and soma-restricted PLP protein isoforms were found in the oligodendroglial phenotype. (3) As shown by EGFP reporter, PLP promoter activation was placed to regulate PLP gene expression in only one neuronal phenotype among the several that constitute neostriatum. It was localized in medium spiny neurons, but not large aspiny neurons. These outcomes have significant implications for the non-canonical functional roles of PLP gene expression in addition to myelinogenesis in mammalian brain, and are consistent with potentially independent pathologic loci in neurons during the course of human mutational disorders of PLP gene expression.
    Developmental Neuroscience 09/2011; 33(2):170-84. DOI:10.1159/000330321 · 2.45 Impact Factor


1 Download
Available from