Modulation of Genetic and Epigenetic Biomarkers of Colorectal Cancer in Humans by Black Raspberries: A Phase I Pilot Study

Department of Internal Medicine, Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43240, USA.
Clinical Cancer Research (Impact Factor: 8.19). 02/2011; 17(3):598-610. DOI: 10.1158/1078-0432.CCR-10-1260
Source: PubMed

ABSTRACT This study evaluated the effects of black raspberries (BRBs) on biomarkers of tumor development in the human colon and rectum including methylation of relevant tumor suppressor genes, cell proliferation, apoptosis, angiogenesis, and expression of Wnt pathway genes.
Biopsies of adjacent normal tissues and colorectal adenocarcinomas were taken from 20 patients before and after oral consumption of BRB powder (60 g/d) for 1-9 weeks. Methylation status of promoter regions of five tumor suppressor genes was quantified. Protein expression of DNA methyltransferase 1 (DNMT1) and genes associated with cell proliferation, apoptosis, angiogenesis, and Wnt signaling were measured.
The methylation of three Wnt inhibitors, SFRP2, SFRP5, and WIF1, upstream genes in Wnt pathway, and PAX6a, a developmental regulator, was modulated in a protective direction by BRBs in normal tissues and in colorectal tumors only in patients who received BRB treatment for an average of 4 weeks, but not in all 20 patients with 1-9 weeks of BRB treatment. This was associated with decreased expression of DNMT1. BRBs modulated expression of genes associated with Wnt pathway, proliferation, apoptosis, and angiogenesis in a protective direction.
These data provide evidence of the ability of BRBs to demethylate tumor suppressor genes and to modulate other biomarkers of tumor development in the human colon and rectum. While demethylation of genes did not occur in colorectal tissues from all treated patients, the positive results with the secondary endpoints suggest that additional studies of BRBs for the prevention of colorectal cancer in humans now appear warranted.

Download full-text


Available from: Kenneth M Riedl, Jul 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now appreciated that both genetic alteration, e.g. mutations, and aberrant epigenetic changes, e.g. DNA methylation, cause cancer. Epigenetic dysregulation is potentially reversible which makes it attractive as targets for cancer prevention. Synthetic drugs targeting enzymes, e.g. DNA methyltransferase and histone deacetylase, that regulate epigenetic patterns are active in clinical settings. In addition, dietary factors have been suggested to have potential to reverse aberrant epigenetic patterns. Uncovering the human epigenome can lead us to better understand the dynamics of DNA methylation in disease progression which can further assist in cancer prevention.
    FEBS letters 11/2010; 585(13):2129-36. DOI:10.1016/j.febslet.2010.11.002 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over-expressed in numerous cancers, Ubiquitin-like containing PHD Ring Finger 1 (UHRF1, also known as ICBP90 or Np95) is characterized by a SRA domain (Set and Ring Associated) which is found only in the UHRF family. UHRF1 constitutes a complex with histone deacetylase 1 (HDAC1) and DNA methyltransferase 1 (DNMT1) via its SRA domain and represses the expression of several tumour suppressor genes (TSGs) including p16INK4A, hMLH1, BRCA1 and RB1. Conversely, UHRF1 is regulated by other TSGs such as p53 and p73. UHRF1 is hypothetically involved in a macro-molecular protein complex called "ECREM" for "Epigenetic Code Replication Machinery". This complex would be able to duplicate the epigenetic code by acting at the DNA replication fork and by activating the right enzymatic activity at the right moment. There are increasing evidence that UHRF1 is the conductor of this replication process by ensuring the crosstalk between DNA methylation and histone modifications via the SRA and Tandem Tudor Domains, respectively. This cross-talk allows cancer cells to maintain the repression of TSGs during cell proliferation. Several studies showed that down-regulation of UHRF1 expression in cancer cells by natural pharmacological active compounds, favors enhanced expression or re-expression of TSGs, suppresses cell growth and induces apoptosis. This suggests that hindering UHRF1 to exert its role in the duplication of the methylation patterns (DNA + histones) is responsible for inducing apoptosis. In this review, we present UHRF1 expression as a target of several natural products and we discuss their underlying molecular mechanisms and benefits for chemoprevention and chemotherapy.
    Journal of Experimental & Clinical Cancer Research 04/2011; 30(1):41. DOI:10.1186/1756-9966-30-41 · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: No abstract.
    Cancer Epidemiology Biomarkers & Prevention 07/2011; 20(9):1982-9. DOI:10.1158/1055-9965.EPI-11-0677 · 4.32 Impact Factor