The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways.

Cancer Research UK Birmingham Cancer Centre, University of Birmingham, Birmingham, United Kingdom.
Journal of Virology (Impact Factor: 4.65). 02/2011; 85(4):1604-14. DOI: 10.1128/JVI.01608-10
Source: PubMed

ABSTRACT Despite triggering strong immune responses, Epstein-Barr virus (EBV) has colonized more than 90% of the adult human population. Successful persistence of EBV depends on the establishment of a balance between host immune responses and viral immune evasion. Here we have extended our studies on the EBV-encoded BILF1 protein, which was recently identified as an immunoevasin that functions by enhancing degradation of major histocompatibility complex class I (MHC-I) antigens via lysosomes. We now demonstrate that disruption of the EKT signaling motif of BILF1 by a K122A mutation impairs the ability of BILF1 to enhance endocytosis of surface MHC-I molecules, while subsequent lysosomal degradation was impaired by deletion of the 21-residue C-terminal tail of BILF1. Furthermore, we identified another mechanism of BILF1 immunomodulation: it targets newly synthesized MHC-I/peptide complexes en route to the cell surface. Importantly, although the diversion of MHC-I on the exocytic pathway caused a relatively modest reduction in cell surface MHC-I, presentation of endogenously processed target peptides to immune CD8(+) effector T cells was reduced by around 65%. The immune-modulating functions of BILF1 in the context of the whole virus were confirmed in cells lytically infected with a recombinant EBV in which BILF1 was deleted. This study therefore extends our initial observations on BILF1 to show that this immunoevasin can target MHC-I antigen presentation via both the exocytic and endocytic trafficking pathways. The results also emphasize the merits of including functional T cell recognition assays to gain a more complete picture of immunoevasin effects on the antigen presentation pathway.

Download full-text


Available from: Jianmin Zuo, Jun 17, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Being present in around 90% of the worldwide population, Epstein-Barr virus (EBV) is an exceptionally prevalent virus. This highly successful virus establishes a latent infection in resting memory B cells and is maintained in a balance between viral homeostasis on one side and antiviral defense of the immune system on the other side. The life cycle of EBV is dependent on many viral proteins, but EBV also regulates a number of endogenous proteins. 7TM receptors and ligands of viral and host origin are examples of such proteins. 7TM receptors are highly druggable and they are among the most popular class of investigational drug targets. The 7TM receptor encoded by EBV-BILF1, is known to downregulate cell surface MHC class I expression as part of the immune evasion strategy of EBV. However, the functional impact of the relationship between EBV and the regulated endogenous 7TM receptors and ligands is still unclear. This is for instance the case for the most upregulated 7TM receptor EBI2 (EBV-induced gene 2 or GPR183). Whereas some regulated genes have been suggested to be involved in the EBV life cycle, others could also be important for the antiviral immune defense. As many of these 7TM receptors and ligands have been shown to be modulated in EBV-associated diseases, targeting these could provide an efficient and specific way to inhibit EBV-associated disease progression. Here, we will review current knowledge on EBV infection, the immune defense against EBV and 7TM receptors and ligands being either encoded or manipulated by EBV. © 2015 Elsevier Inc. All rights reserved.
    Progress in molecular biology and translational science 129C:395-427. DOI:10.1016/bs.pmbts.2014.10.011 · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herpesviruses are an ancient group which have exploited gene capture of multiple cellular modulators of the immune response. Viral homologues of 7 transmembrane receptors (v7TMRs) are a consistent feature of beta- and gammaherpesviruses; the majority of the v7TMRs are homologous to cellular chemokine receptors (CKRs). Conserved families of v7TMRs distinguish between beta- versus gammaherpesviruses; furthermore, significant divisions within these subfamilies, such as between genera of the gammaherpesviruses or between the primate and rodent cytomegaloviruses, coincide with specific v7TMR gene families. Divergence of functional properties between the viral 7TMR and their cellular counterparts is likely, therefore, to reflect adaptation supporting various aspects of the viral lifecycle with concomitant effects upon viral pathogenesis. Consistent with their long evolutionary history, the v7TMRs have acquired a range of distinctive characteristics. This chapter reviews key features of the v7TMRs which are likely to impact upon their functional roles: trafficking properties, ligand specificity, and signaling capacity. Rapid, constitutive endocytosis, reminiscent of cellular "scavenger" receptors, may provide a mechanism for immune evasion, or alternatively relate to virion assembly, including incorporation of v7TMRs within the virion envelope. Some v7TMRs display relatively broad chemokine-binding specificity, whereas others remain "orphan" and may be completely independent of ligand activation. Indeed, many of the v7TMRs have been shown to signal constitutively, associated in some cases with notable divergence of highly conserved regulatory elements such as the "DRY" motif of TMIII. The availability of rodent models for v7TMR functional studies has provided evidence for important biological roles, including cellular transformation, tissue tropism, and viral persistence. Recent studies addressing signaling pathways critical to these phenotypes will be discussed, with reference to both beta- and gammaherpesviruses. © 2015 Elsevier Inc. All rights reserved.
    Progress in molecular biology and translational science 129C:353-393. DOI:10.1016/bs.pmbts.2014.10.010 · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epstein-Barr virus (EBV), a B-lymphotropic herpesvirus widespread in the human population and normally contained as an asymptomatic infection by T cell surveillance, nevertheless causes infectious mononucleosis and is strongly linked to several types of human cancer. Here we describe new findings on the range of cellular immune responses induced by EBV infection, on viral strategies to evade those responses and on the links between HLA gene loci and EBV-induced disease. The success of adoptive T cell therapy for EBV-driven post-transplant lymphoproliferative disease is stimulating efforts to target other EBV-associated tumours by immunotherapeutic means, and has reawakened interest in the ultimate intervention strategy, a prophylactic EBV vaccine.
    Current opinion in immunology 04/2011; 23(2):258-64. DOI:10.1016/j.coi.2010.12.014 · 7.87 Impact Factor