Article

On the origins of sexual dimorphism in butterflies.

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.
Proceedings of the Royal Society B: Biological Sciences (Impact Factor: 5.29). 12/2010; 278(1714):1981-8. DOI: 10.1098/rspb.2010.2220
Source: PubMed

ABSTRACT The processes governing the evolution of sexual dimorphism provided a foundation for sexual selection theory. Two alternative processes, originally proposed by Darwin and Wallace, differ primarily in the timing of events creating the dimorphism. In the process advocated by Darwin, a novel ornament arises in a single sex, with no temporal separation in the origin and sex-limitation of the novel trait. By contrast, Wallace proposed a process where novel ornaments appear simultaneously in both sexes, but are then converted into sex-limited expression by natural selection acting against showy coloration in one sex. Here, we investigate these alternative modes of sexual dimorphism evolution in a phylogenetic framework and demonstrate that both processes contribute to dimorphic wing patterns in the butterfly genera Bicyclus and Junonia. In some lineages, eyespots and bands arise in a single sex, whereas in other lineages they appear in both sexes but are then lost in one of the sexes. In addition, lineages displaying sexual dimorphism were more likely to become sexually monomorphic than they were to remain dimorphic. This derived monomorphism was either owing to a loss of the ornament ('drab monomorphism') or owing to a gain of the same ornament by the opposite sex ('mutual ornamentation'). Our results demonstrate the necessity of a plurality in theories explaining the evolution of sexual dimorphism within and across taxa. The origins and evolutionary fate of sexual dimorphism are probably influenced by underlying genetic architecture responsible for sex-limited expression and the degree of intralocus sexual conflict. Future comparative and developmental work on sexual dimorphism within and among taxa will provide a better understanding of the biases and constraints governing the evolution of animal sexual dimorphism.

0 Bookmarks
 · 
177 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differences between sexes of the same species are widespread and are variable in nature. While it is often assumed that males are more ornamented than females, in the nymphalid butterfly genus Bicyclus, females have, on average, more eyespot wing color patterns than males. Here we extend these studies by surveying eyespot pattern sexual dimorphism across the Nymphalidae family of butterflies. Eyespot presence or absence was scored from a total of 38 wing compartments for two males and two females of each of 450 nymphalid species belonging to 399 different genera. Differences in eyespot number between sexes of each species were tallied for each wing surface (e.g., dorsal and ventral) of forewings and hindwings. In roughly 44% of the species with eyespots, females had more eyespots than males, in 34%, males had more eyespots than females, and, in the remaining 22% of the species, there was monomorphism in eyespot number. Dorsal and forewing surfaces were less patterned, but proportionally more dimorphic, than ventral and hindwing surfaces, respectively. In addition, wing compartments that frequently displayed eyespots were among the least sexually dimorphic. This survey suggests that dimorphism arises predominantly in "hidden" or "private" surfaces of a butterfly's wing, as previously demonstrated for the genus Bicyclus.
    International journal of evolutionary biology. 01/2013; 2013:926702.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We evolved violet structural color from brown-colored butterflies over six generations of artificial selection. The mechanism of color generation was identified and found to mimic the natural evolution of violet/blue color in closely related species.
    CLEO: Science and Innovations; 06/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article reviews the latest developments in our understanding of the origin, development, and evolution of nymphalid butterfly eyespots. Recent contributions to this field include insights into the evolutionary and developmental origin of eyespots and their ancestral deployment on the wing, the evolution of eyespot number and eyespot sexual dimorphism, and the identification of genes affecting eyespot development and black pigmentation. I also compare features of old and more recently proposed models of eyespot development and propose a schematic for the genetic regulatory architecture of eyespots. Using this schematic I propose two hypotheses for why we observe limits to morphological diversity across these serially homologous traits. Expected final online publication date for the Annual Review of Entomology Volume 60 is January 07, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Entomology 10/2014; · 13.02 Impact Factor

Full-text (2 Sources)

Download
51 Downloads
Available from
Jun 1, 2014