Article

Segmentation of fluorescence microscopy cell images using unsupervised mining.

Data Mining Research Laboratory, Department of Computer Science, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA.
The Open Medical Informatics Journal 01/2010; 4:41-9. DOI: 10.2174/1874431101004020041
Source: PubMed

ABSTRACT The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

0 Bookmarks
 · 
81 Views
  • 05/2013, Degree: PhD, Supervisor: Zoltan Vamossy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The comparative study of the results of various segmentation methods for the digital images of the follicular lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White method, the Bernsen method, the Yasuda method and the Palumbo method, are calculated. Methods are applied to three types of images constructed by extraction of the brown colour information from the artificial images synthesized based on counterpart experimentally captured images. This paper presents usefulness of the microscopic image synthesis method in evaluation as well as comparison of the image processing results. The results of thoughtful analysis of broad range of adaptive threshold methods applied to: (1) the blue channel of RGB, (2) the brown colour extracted by deconvolution and (3) the 'brown component' extracted from RGB allows to select some pairs: method and type of image for which this method is most efficient considering various criteria e.g. accuracy and precision in area detection or accuracy in number of objects detection and so on. The comparison shows that the White, the Bernsen and the Sauvola methods results are better than the results of the rest of the methods for all types of monochromatic images. All three methods segments the immunopositive nuclei with the mean accuracy of 0.9952, 0.9942 and 0.9944 respectively, when treated totally. However the best results are achieved for monochromatic image in which intensity shows brown colour map constructed by colour deconvolution algorithm. The specificity in the cases of the Bernsen and the White methods is 1 and sensitivities are: 0.74 for White and 0.91 for Bernsen methods while the Sauvola method achieves sensitivity value of 0.74 and the specificity value of 0.99. According to Bland-Altman plot the Sauvola method selected objects are segmented without undercutting the area for true positive objects but with extra false positive objects. The Sauvola and the Bernsen methods gives complementary results what will be exploited when the new method of virtual tissue slides segmentation be develop. Virtual Slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2688071286623240.
    Diagnostic Pathology 03/2013; 8(1):48. · 1.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Out of all various types of lung cancers, adenocarcinoma is increasing at an alarming rate mainly due to the increased rate of smoking. This work aims at developing a sputum cytology image analysis system which identifies benign and malignant glandular cells. In our proposed system, we develop an automated lung cancer detection system which segments the cell nuclei and classifies the glandular cells from the given sputum cytology image using a novel scale space catastrophe histogram (SSCH) feature. Catastrophe points occur when pairwise annihilation of extrema and saddle happens in scale space. Unusual nuclear texture shows the presence of malignancy in cells, and SSCH-based texture feature extraction from nuclear region is done. From the input high-resolution image, the cellular regions are localized using maximization of determinant of Hessian, nuclei regions are segmented using K-means clustering, and SSCH features are extracted and classified using support vector machine and color thresholding. The experimental results show that the proposed method obtained an accuracy of 87.53 % which is better than Gabor filter-based gray-level co-occurrence features, local binary pattern, and complex Daubechies wavelet-based features. The results obtained are in accordance with the dataset classified by medical experts.
    Signal Image and Video Processing 06/2013; · 0.41 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
Jun 1, 2014