Article

Segmentation of Fluorescence Microscopy Cell Images Using Unsupervised Mining

Data Mining Research Laboratory, Department of Computer Science, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA.
The Open Medical Informatics Journal 08/2010; 4(1):41-9. DOI: 10.2174/1874431101004020041
Source: PubMed

ABSTRACT The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

3 Followers
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell segmentation which extracts cell objects from background is one of basic works in bio-imaging which analyze cell images acquired from live cells in cell culture. In the case of clear images, they have a bi-modal histogram distribution and segmentation of them can easily be performed by global threshold algorithm such as Otsu algorithm. But In the case of degraded images, it is difficult to get exact segmentation results. In this paper, we developed a cell segmentation system that it classify input images by the type of their histogram distribution and then apply a proper segmentation algorithm. If it has a bi-modal distribution, a global threshold algorithm is applied for segmentation. Otherwise it has a uni-modal distribution, our algorithm is performed. By experimentation, our system gave exact segmentation results for uni-modal cell images as well as bi-modal cell images.
    02/2014; 18(2). DOI:10.6109/jkiice.2014.18.2.431
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the first steps for the automation of the serum titration process. In fact, this process requires an Indirect Immunofluorescence (IIF) diagnosis automation. We deal with the initial phase that represents the fluorescence images segmentation. Our approach consists of three principle stages: (1) a color based segmentation which aims at extracting the fluorescent foreground based on k-means clustering, (2) the segmentation of the fluorescent clustered image, and (3) a region-based feature segmentation, intended to remove the fluorescent noisy regions and to locate fluorescent parasites. We evaluated the proposed method on 40 IIF images. Experimental results show that such a method provides reliable and robust automatic segmentation of fluorescent Promastigote parasite.
    Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, Chicago, IL, USA; 08/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the first steps for the automation of the serum titration process. In fact, this process requires an Indirect Immunofluorescence (IIF) diagnosis automation. We deal with the initial phase that represents the fluorescence images segmentation. Our approach consists of three principle stages: (1) a color based segmentation which aims at extracting the fluorescent foreground based on k-means clustering, (2) the segmentation of the fluorescent clustered image, and (3) a region-based feature segmentation, intended to remove the fluorescent noisy regions and to locate fluorescent parasites. We evaluated the proposed method on 40 IIF images. Experimental results show that such a method provides reliable and robust automatic segmentation of fluorescent Promastigote parasite.

Full-text (2 Sources)

Download
43 Downloads
Available from
Jun 1, 2014