Article

Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement.

Human Movement Sciences Department, Old Dominion University, Norfolk, Virginia, USA.
Diabetes care (Impact Factor: 7.74). 12/2010; 33(12):e147-67. DOI: 10.2337/dc10-9990
Source: PubMed

ABSTRACT Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes, many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay type 2 diabetes, along with positively affecting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower type 2 diabetes risk by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes mellitus, and safe and effective practices for PA with diabetes-related complications.

2 Bookmarks
 · 
457 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An acute bout of exercise can improve endothelial function and insulin sensitivity when measured on the day following exercise. Our aim was to compare acute high-intensity continuous exercise (HICE) to high-intensity interval exercise (HIIE) on circulating endothelial microparticles (EMPs) and insulin sensitivity in overweight/obese men and women. Inactive males (BMI = 30 ± 3, 25 ± 6 yr, n = 6) and females (BMI = 28 ± 2, 21 ± 3 yr, n = 7) participated in three experimental trials in a randomized counterbalanced crossover design: 1) No exercise control (Control); 2) HICE (20 min cycling @ just above ventilatory threshold); 3) HIIE (10 X 1-min @ ∼90% peak aerobic power). Exercise conditions were matched for external work and diet was controlled post-exercise. Fasting blood samples were obtained ∼18 hr after each condition. CD62E+ and CD31+/CD42b- EMPs were assessed by flow cytometry and insulin resistance (IR) was estimated by homeostasis model assessment (HOMA-IR). There was a significant sex X exercise interaction for CD62E+ EMPs, CD31+/CD42b- EMPs, and HOMA-IR (all P<0.05). In males, both HICE and HIIE reduced EMPs compared to Control (P≤0.05). In females, HICE increased CD62E+ EMPs (P<0.05 vs. Control) whereas CD31+/CD42b- EMPs were unaltered by either exercise type. There was a significant increase in HOMA-IR in males but a decrease in females following HIIE compared to Control (P<0.05). Overweight/obese males and females appear to respond differently to acute bouts of high-intensity exercise. A single session of HICE and HIIE reduced circulating EMPs measured on the morning following exercise in males but in females CD62E+ EMPs were increased following HICE. Next day HOMA-IR paradoxically increased in males but was reduced in females following HIIE. Future research is needed to investigate mechanisms responsible for potential differential responses between males and females.
    PLoS ONE 01/2015; 10(2):e0115860. DOI:10.1371/journal.pone.0115860 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was assess the effect of a training session with Nintendo Wii® on the hemodynamic responses of healthy women not involved in regular physical exercise. Twenty-five healthy unfit women aged 28 ± 6 years played for 10 minutes the game Free Run (Wii Fit Plus). The resting heart rate (RHR), systolic and diastolic blood pressures (SBP and DBP), and double (rate-pressure) product (DP) were measured before and after activity. The HR during the activity (exercise heart rate, EHR) was measured every minute. A statistically significant difference was observed between the RHR (75 ± 9 bpm) and the mean EHR (176 ± 15 bpm) (P < 0.001). The EHR remained in the target zone for aerobic exercise until the fifth minute of activity, which coincided with the upper limit of the aerobic zone (80% heart rate reserve (HRR) + RHR) from the sixth to tenth minute. The initial (110 ± 8 mmHg) and final (145 ± 17 mmHg) SBP (P < 0.01) were significantly different, as were the initial (71 ± 8 mmHg) and final (79 ± 9 mmHg) DBP (P < 0.01). A statistically significant difference was observed between the pre- (8.233 ± 1.141 bpm-mmHg) and post-activity (25.590 ± 4.117 bpm-mmHg) DP (P < 0.01). Physical exercise while playing Free Run sufficed to trigger acute hemodynamic changes in healthy women who were not engaged in regular physical exercise.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance training (RT) can provide several benefits for individuals with Type 2 diabetes. The aim of this study was to investigate the effects of resistance training on the strength levels and uric acid (UA) concentration in individuals with Type 2 diabetes. The study included 68 patients (57.7±9.0 years) that participated in an organized program of RT for 12 weeks. The volunteers were divided into two groups: an experimental group (EG; n=34) that performed the resistance training program consisting of seven exercises executed in an alternating order based on segments; and a control group (CG; n=34) that maintained their normal daily life activities. Muscle strength and uric acid were measured both pre- and post-experiment. The results showed a significant increase in strength of the subjects in the EG for all exercises included in the study (p<0.001). Comparing the strength levels of the post-test, intergroup differences were found in supine sitting (p<0.001), leg extension (p<0.001), shoulder press (p<0.001), leg curl (p=0.001), seated row (p<0.001), leg press (p=0.001) and high pulley (p<0.001). The measured uric acid was significantly increased in both experimental and control groups (p<0.001 and p=0.001, respectively). The intergroup comparison showed a significant increase for the EG (p=0.024). We conclude that the training program was effective for strength gains despite an increase in uric acid in Type 2 diabetics.
    09/2014; 43(1). DOI:10.2478/hukin-2014-0085

Full-text (2 Sources)

Download
15 Downloads
Available from
Dec 30, 2014