Intrarenal Angiotensin-Converting Enzyme Induces Hypertension in Response to Angiotensin I Infusion

Departments of Physiology and Hypertension, Renal Center, Tulane University School of Medicine, New Orleans, Louisiana, USA.
Journal of the American Society of Nephrology (Impact Factor: 9.34). 11/2010; 22(3):449-59. DOI: 10.1681/ASN.2010060624
Source: PubMed


The contribution of the intrarenal renin-angiotensin system to the development of hypertension is incompletely understood. Here, we used targeted homologous recombination to generate mice that express angiotensin-converting enzyme (ACE) in the kidney tubules but not in other tissues. Mice homozygous for this genetic modification (ACE 9/9 mice) had low BP levels, impaired ability to concentrate urine, and variable medullary thinning. In accord with the ACE distribution, these mice also had reduced circulating angiotensin II and high plasma renin concentration but maintained normal kidney angiotensin II levels. In response to chronic angiotensin I infusions, ACE 9/9 mice displayed increased kidney angiotensin II, enhanced rate of urinary angiotensin II excretion, and development of hypertension. These findings suggest that intrarenal ACE-derived angiotensin II formation, even in the absence of systemic ACE, increases kidney angiotensin II levels and promotes the development of hypertension.

8 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The increased activity of intrarenal renin-angiotensin system (RAS) in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis and renal injury. Increases in intrarenal and interstitial angiotensin (Ang) II levels are due to increased AT(1) receptor mediated Ang II uptake and stimulation of renal angiotensinogen (AGT) mRNA and protein expression. Augmented proximal tubule AGT production increases tubular AGT secretion and spillover of AGT into the distal nephron and urine. Increased renin formation by principal cells of the collecting ducts forms Ang I from AGT thus increasing Ang II. The catalytic actions of renin and prorenin are enhanced by prorenin receptors (PRRs) on the intercalated cells. The resultant increased intrarenal Ang II levels contribute to the genesis of chronic hypertension.
    Current Opinion in Pharmacology 02/2011; 11(2):180-6. DOI:10.1016/j.coph.2011.01.009 · 4.60 Impact Factor

  • Journal of Hypertension 07/2011; 29(7):1292-4. DOI:10.1097/HJH.0b013e328348f031 · 4.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: -Angiotensin-converting enzyme (ACE) is composed of the N- and C-terminal catalytic domains. To study the role of the ACE domains in the inflammatory response, N-knockout (KO) and C-KO mice, models lacking 1 of the 2 ACE domains, were analyzed during angiotensin II-induced hypertension. At 2 weeks, N-KO mice have systolic blood pressures that averaged 173±4.6 mm Hg, which is more than 25 mm Hg higher than the blood pressures observed in wild-type or C-KO mice (146±3.2 and 147±4.2 mm Hg). After 3 weeks, blood pressure differences between N-KO, C-KO, and wild-type were even more pronounced. Macrophages from N-KO mice have increased expression of tumor necrosis factor α after stimulation with either lipopolysaccharide (about 4-fold) or angiotensin II (about 2-fold), as compared with C-KO or wild-type mice. Inhibition of the enzyme prolyl oligopeptidase, responsible for the formation of acetyl-SerAspLysPro and other peptides, eliminated the blood pressure difference and the difference in tumor necrosis factor α expression between angiotensin II-treated N-KO and wild-type mice. However, this appears independent of acetyl-SerAspLysPro. These data establish significant differences in the inflammatory response as a function of ACE N- or C-domain catalytic activity. They also indicate a novel role of prolyl oligopeptidase in the cytokine regulation and in the blood pressure response to experimental hypertension.
    Hypertension 12/2011; 59(2):283-90. DOI:10.1161/HYPERTENSIONAHA.111.180844 · 6.48 Impact Factor
Show more

Similar Publications