Polymorphisms of HIV-2 integrase and selection of resistance to raltegravir

Laboratoire de Rétrovirologie, CRP-Santé, Luxembourg, Luxembourg.
Retrovirology (Impact Factor: 4.19). 11/2010; 7(1):98. DOI: 10.1186/1742-4690-7-98
Source: PubMed


Human Immunodeficiency Virus type 2 is naturally resistant to some antiretroviral drugs, restricting therapeutic options for patients infected with HIV-2. Regimens including integrase inhibitors (INI) seem to be effective, but little data on HIV-2 integrase (IN) polymorphisms and resistance pathways are available.
The integrase coding sequence from 45 HIV-2-infected, INI-naïve, patients was sequenced and aligned against the ROD (group A) or EHO (group B) reference strains and polymorphic or conserved positions were analyzed.To select for raltegravir (RAL)-resistant variants in vitro, the ROD strain was cultured under increasing sub-optimal RAL concentrations for successive rounds. The phenotype of the selected variants was assessed using an MTT assay.
We describe integrase gene polymorphisms in HIV-2 clinical isolates from 45 patients. Sixty-seven percent of the integrase residues were conserved. The HHCC Zinc coordination motif, the catalytic triad DDE motif, and AA involved in IN-DNA binding and correct positioning were highly conserved and unchanged with respect to HIV-1 whereas the connecting residues of the N-terminal domain, the dimer interface and C-terminal LEDGF binding domain were highly conserved but differed from HIV-1. The N155 H INI resistance-associated mutation (RAM) was detected in the virus population from one ARV-treated, INI-naïve patient, and the 72I and 201I polymorphisms were detected in samples from 36 and 38 patients respectively. No other known INI RAM was detected.Under RAL selective pressure in vitro, a ROD variant carrying the Q91R+I175M mutations was selected. The Q91R and I175M mutations emerged simultaneously and conferred phenotypic resistance (13-fold increase in IC50). The Q91R+I175M combination was absent from all clinical isolates. Three-dimensional modeling indicated that residue 91 lies on the enzyme surface, at the entry of a pocket containing the DDE catalytic triad and that adding a positive charge (Gln to Arg) might compromise IN-RAL affinity.
HIV-2 polymorphisms from 45 INI-naïve patients are described. Conserved regions as well as frequencies of HIV-2 IN polymorphisms were comparable to HIV-1. Two new mutations (Q91R and I175M) that conferred high resistance to RAL were selected in vitro, which might affect therapeutic outcome.

Download full-text


Available from: Jean Ruelle,
  • Source
    • "0 Bercoff DP et al . 2010 [ 36 ] JR46 [ 25019 ] 59 - ATG CCC ATC CCA CCT TAT GGT G - 39 22 Bercoff DP et al . 2010 [ 36 ] JR47 [ 25041 ] 59 - ATT ACC CTG CTG CAA CTG CAC C - 39 22 Bercoff DP et al . 2010 [ 36 ] JR48 [ 24466 ] 59 - GTT CTA TAC CTA TCC ACC - 39 18 Bercoff DP et al . 2010 [ 36 ] AV33 [ +4433 ] 59 - GTG AAG ATG GTA GCA TGG TGG - 39 21 Bercoff DP et al . 2010 [ 36 ] H2Mp9 [ +2932 ]"
    [Show abstract] [Hide abstract]
    ABSTRACT: To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.
    PLoS ONE 03/2014; 9(3):e92747. DOI:10.1371/journal.pone.0092747 · 3.23 Impact Factor
  • Source
    • "Raltegravir (RAL) and elvitegravir (EVG) are the first INSTIs approved for therapy [10,11] while dolutegravir (DTG) is in advanced phase 3 clinical trials [12]. Although both RAL and EVG, the first INSTIs, are susceptible to virological failure due to the emergence of resistance mutations within the integrase coding sequence [6,13,14], major resistance mutations have not been reported in drug-naive patients who were treated in clinical trials with the second-generation drug, DTG [6,12,15,16]. However, in vitro drug selection experiments performed in our laboratory have identified a R263K mutation within the integrase coding region as a resistance mutation when subtype B viruses were cultivated in the presence of DTG and also showed that H51Y commonly emerged as a secondary mutation [17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Clinical studies have shown that integrase strand transfer inhibitors can be used to treat HIV-1 infection. Although the first-generation integrase inhibitors are susceptible to the emergence of resistance mutations that impair their efficacy in therapy, such resistance has not been identified to date in drug-naïve patients who have been treated with the second-generation inhibitor dolutegravir. During previous in vitro selection study, we identified a R263K mutation as the most common substitution to arise in the presence of dolutegravir with H51Y arising as a secondary mutation. Additional experiments reported here provide a plausible explanation for the absence of reported dolutegravir resistance among integrase inhibitor-naïve patients to date. Results We now show that H51Y in combination with R263K increases resistance to dolutegravir but is accompanied by dramatic decreases in both enzymatic activity and viral replication. Conclusions Since H51Y and R263K may define a unique resistance pathway to dolutegravir, our results are consistent with the absence of resistance mutations in antiretroviral drug-naive patients treated with this drug.
    Retrovirology 02/2013; 10(1):22. DOI:10.1186/1742-4690-10-22 · 4.19 Impact Factor
  • Source
    • "The development of novel treatments based on drug classes highly effective against HIV-2 is therefore essential. INIs are active against HIV-2 IN and are therefore a promising option for use in the treatment of HIV-2-infected patients [10,11]. IN plays a key role in the viral replication cycle. "
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-2 is endemic in West Africa and has spread throughout Europe. However, the alternatives for HIV-2-infected patients are more limited than for HIV-1. Raltegravir, an integrase inhibitor, is active against wild-type HIV-2, with a susceptibility to this drug similar to that of HIV-1, and is therefore a promising option for use in the treatment of HIV-2-infected patients. Recent studies have shown that HIV-2 resistance to raltegravir involves one of three resistance mutations, N155H, Q148R/H and Y143C, previously identified as resistance determinants in the HIV-1 integrase coding sequence. The resistance of HIV-1 IN has been confirmed in vitro for mutated enzymes harboring these mutations, but no such confirmation has yet been obtained for HIV-2. The integrase coding sequence was amplified from plasma samples collected from ten patients infected with HIV-2 viruses, of whom three RAL-naïve and seven on RAL-based treatment at the time of virological failure. The genomes of the resistant strains were cloned and three patterns involving N155H, G140S/Q148R or Y143C mutations were identified. Study of the susceptibility of integrases, either amplified from clinical isolates or obtained by mutagenesis demonstrated that mutations at positions 155 and 148 render the integrase resistant to RAL. The G140S mutation conferred little resistance, but compensated for the catalytic defect due to the Q148R mutation. Conversely, Y143C alone did not confer resistance to RAL unless E92Q is also present. Furthermore, the introduction of the Y143C mutation into the N155H resistant background decreased the resistance level of enzymes containing the N155H mutation. This study confirms that HIV-2 resistance to RAL is due to the N155H, G140S/Q148R or E92Q/Y143C mutations. The N155H and G140S/Q148R mutations make similar contributions to resistance in both HIV-1 and HIV-2, but Y143C is not sufficient to account for the resistance of HIV-2 genomes harboring this mutation. For Y143C to confer resistance in vitro, it must be accompanied by E92Q, which therefore plays a more important role in the HIV-2 context than in the HIV-1 context. Finally, the Y143C mutation counteracts the resistance conferred by the N155H mutation, probably accounting for the lack of detection of these mutations together in a single genome.
    Retrovirology 08/2011; 8(1):68. DOI:10.1186/1742-4690-8-68 · 4.19 Impact Factor
Show more