Article

Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice.

Belfer Institute for Applied Cancer Science and Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
Nature (Impact Factor: 42.35). 01/2011; 469(7328):102-6. DOI: 10.1038/nature09603
Source: PubMed

ABSTRACT An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes. Telomerase-deficient mice have served as a model system to study the adverse cellular and organismal consequences of wide-spread endogenous DNA damage signalling activation in vivo. Telomere loss and uncapping provokes progressive tissue atrophy, stem cell depletion, organ system failure and impaired tissue injury responses. Here, we sought to determine whether entrenched multi-system degeneration in adult mice with severe telomere dysfunction can be halted or possibly reversed by reactivation of endogenous telomerase activity. To this end, we engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible telomerase reverse transcriptase-oestrogen receptor (TERT-ER) under transcriptional control of the endogenous TERT promoter. Homozygous TERT-ER mice have short dysfunctional telomeres and sustain increased DNA damage signalling and classical degenerative phenotypes upon successive generational matings and advancing age. Telomerase reactivation in such late generation TERT-ER mice extends telomeres, reduces DNA damage signalling and associated cellular checkpoint responses, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Notably, somatic telomerase reactivation reversed neurodegeneration with restoration of proliferating Sox2(+) neural progenitors, Dcx(+) newborn neurons, and Olig2(+) oligodendrocyte populations. Consistent with the integral role of subventricular zone neural progenitors in generation and maintenance of olfactory bulb interneurons, this wave of telomerase-dependent neurogenesis resulted in alleviation of hyposmia and recovery of innate olfactory avoidance responses. Accumulating evidence implicating telomere damage as a driver of age-associated organ decline and disease risk and the marked reversal of systemic degenerative phenotypes in adult mice observed here support the development of regenerative strategies designed to restore telomere integrity.

1 Bookmark
 · 
206 Views
  • Source
    Aging and Disease. 01/2015; 6(1):56-75.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: According to the traditional explanations ("old paradigm"), aging is due to the progressive accumulation of heterogeneous damages that are insufficiently contrasted by natural selection. An opposite interpretation ("new paradigm") sees aging as selectively advantageous in terms of supra-individual natural selection, and this implies the indispensable existence of genetically controlled specific mechanisms that determine it. The aim of this work is to expound synthetically the progressive alterations that mark the aging by showing how these changes are clearly defined and regulated by genes. The possibility of such a description, based on sound evidence, is an essential element for the plausibility of the new paradigm, and a fundamental argument against the tenability of the old paradigm.
    Biochemistry (Moscow) 10/2014; 79(10):1004-16. · 1.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Telomere extension has been proposed as a means to improve cell culture and tissue engineering and to treat disease. However, telomere extension by nonviral, nonintegrating methods remains inefficient. Here we report that delivery of modified mRNA encoding TERT to human fibroblasts and myoblasts increases telomerase activity transiently (24-48 h) and rapidly extends telomeres, after which telomeres resume shortening. Three successive transfections over a 4 d period extended telomeres up to 0.9 kb in a cell type-specific manner in fibroblasts and myoblasts and conferred an additional 28 ± 1.5 and 3.4 ± 0.4 population doublings (PD), respectively. Proliferative capacity increased in a dose-dependent manner. The second and third transfections had less effect on proliferative capacity than the first, revealing a refractory period. However, the refractory period was transient as a later fourth transfection increased fibroblast proliferative capacity by an additional 15.2 ± 1.1 PD, similar to the first transfection. Overall, these treatments led to an increase in absolute cell number of more than 10(12)-fold. Notably, unlike immortalized cells, all treated cell populations eventually stopped increasing in number and expressed senescence markers to the same extent as untreated cells. This rapid method of extending telomeres and increasing cell proliferative capacity without risk of insertional mutagenesis should have broad utility in disease modeling, drug screening, and regenerative medicine.-Ramunas, J., Yakubov, E., Brady, J. J., Corbel, S. Y., Holbrook, C., Brandt, M., Stein, J., Santiago, J. G., Cooke, J. P., Blau, H. M. Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. © FASEB.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 01/2015;

Full-text (2 Sources)

Download
68 Downloads
Available from
May 22, 2014