Bmi-1 Is a Crucial Regulator of Prostate Stem Cell Self-Renewal and Malignant Transformation

Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 90095, USA.
Cell stem cell (Impact Factor: 22.15). 12/2010; 7(6):682-93. DOI: 10.1016/j.stem.2010.11.013
Source: PubMed

ABSTRACT The Polycomb group transcriptional repressor Bmi-1 is often upregulated in prostate cancer, but its functional roles in prostate stem cell maintenance and prostate cancer are unclear. Loss- and gain-of-function analysis in a prostate sphere assay indicates that Bmi-1 expression is required for self-renewal activity and maintenance of p63(+) stem cells. Loss of Bmi-1 blocks the self-renewal activity induced by heightened β-catenin signaling, suggesting that Bmi-1 is required for full activity of another self-renewal pathway. In vivo, Bmi-1 expression is necessary for normal prostate tubule regeneration. Altered self-renewal and proliferation through Bmi-1 modulation diminishes the susceptibility of prostate cells to transformation. In an in vivo prostate regeneration system, Bmi-1 inhibition protects prostate cells from FGF10-driven hyperplasia and slows the growth of aggressive Pten-deletion-induced prostate cancer. We conclude that Bmi-1 is a crucial regulator of self-renewal in adult prostate cells and plays important roles in prostate cancer initiation and progression.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is the second leading cause of cancer-related deaths of men. Bmi-1, a member of PcG family of proteins, has been implicated in the pathogenesis of prostate cancer, and disturbed profile of microRNAs (miRNAs) has been found in prostate cancer tissues. How Bmi-1 is regulated by miRNAs is unclear. In this study, we screened 18 miRNAs that potentially repress the expression of Bmi-1 using a dual luciferase system and found that 12 miRNAs could bind with the 3'-untranslated region of Bmi-1 mRNA. Using qRT-PCR, we found that expression of miR-221, -15a, and -30d was significantly reduced in prostate cancer tissues. Subsequent functional study indicated that miR-221 and miR-30d can repress prostate cancer cell proliferation, and this effect can be partially rescued by Bmi-1 overexpression. Our study constructs the relation between downregulated miR-221 and miR-30d and prostate cancer pathogenesis. These results indicate that miR-221 and miR-30d are candidate tumor suppressor miRNAs in prostate cancer and therefore serve as potential clinical classification markers and therapeutic targets for human prostate cancer.
    Biochemistry (Moscow) 03/2015; 80(3):276-83. DOI:10.1134/S0006297915030037 · 1.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of ERβ in prostate cancer is unclear, although loss of ERβ is associated with aggressive disease. Given that mice deficient in ERβ do not develop prostate cancer, we hypothesized that ERβ loss occurs as a consequence of tumorigenesis caused by other oncogenic mechanisms and that its loss is necessary for tumorigenesis. In support of this hypothesis, we found that ERβ is targeted for repression in prostate cancer caused by PTEN deletion and that loss of ERβ is important for tumor formation. ERβ transcription is repressed by BMI-1, which is induced by PTEN deletion and important for prostate tumorigenesis. This finding provides a mechanism for how ERβ expression is regulated in prostate cancer. Repression of ERβ contributes to tumorigenesis because it enables HIF-1/VEGF signaling that sustains BMI-1 expression. These data reveal a positive feedback loop that is activated in response to PTEN loss and sustains BMI-1. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 03/2015; 10(12). DOI:10.1016/j.celrep.2015.02.063 · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cells (CSCs) are maintained by their somatic stem cells and are responsible for tumor initiation, chemoresistance, and metastasis. Evidence for the CSCs existence has been reported for a number of human cancers. The CSC mitochondria have been shown recently to be an important target for cancer treatment, but clinical significance of CSCs and their mitochondria properties remain unclear. Mitochondria-targeted agents are considerably more effective compared to other agents in triggering apoptosis of CSCs, as well as general cancer cells, via mitochondrial dysfunction. Mitochondrial metabolism is altered in cancer cells because of their reliance on glycolytic intermediates, which are normally destined for oxidative phosphorylation. Therefore, inhibiting cancer-specific modifications in mitochondrial metabolism, increasing reactive oxygen species production, or stimulating mitochondrial permeabilization transition could be promising new therapeutic strategies to activate cell death in CSCs as well, as in general cancer cells. This review analyzed mitochondrial function and its potential as a therapeutic target to induce cell death in CSCs. Furthermore, combined treatment with mitochondria-targeted drugs will be a promising strategy for the treatment of relapsed and refractory cancer.
    03/2015; 7(2):418-427. DOI:10.4252/wjsc.v7.i2.418


Available from