Article

Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters.

Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Japan.
FEBS letters (Impact Factor: 3.54). 12/2010; 584(24):4865-71. DOI: 10.1016/j.febslet.2010.11.036
Source: PubMed

ABSTRACT TCR-microclusters (MC) are generated upon TCR stimulation prior to the immune synapse formation independently of lipid rafts. TCR-MCs contain receptors, kinases and adaptors, and function as the signaling unit for T cell activation. The TCR complex, but not the signaling molecules, is transported to the center to form cSMAC. The co-stimulation receptor CD28 joins the signaling region of cSMAC and recruits PKCθ and Carma1. CTLA-4 accumulates in the same region and competes with CD28 for negative regulation of T cell activation. T cell activation is therefore mediated by two spatially distinct signaling compartments: TCR signaling by the peripheral TCR-MC and co-stimulation signal by the central signaling cSMAC.

0 Bookmarks
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Activated and regulatory T cells express the negative co-stimulatory molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) that binds B7 on antigen-presenting cells to mediate cellular responses. Single nucleotide polymorphisms in the CTLA-4 gene have been found to affect alternative splicing and are linked to autoimmune disease susceptibility or resistance. Increased expression of a soluble splice form (sCTLA-4), lacking the transmembrane domain encoded by exon 3, has been shown to accelerate autoimmune pathology. In contrast, an exon 2-deficient form lacking the B7 ligand binding domain (liCTLA-4), expressed by diabetes resistant mouse strains has been shown to be protective when expressed as a transgene in diabetes susceptible non-obese diabetic (NOD) mice. We sought to employ an antisense-targeted splice-switching approach to independently produce these CTLA-4 splice forms in NOD mouse T cells and observe their relative impact on spontaneous autoimmune diabetes susceptibility. In vitro antisense targeting of the splice acceptor site for exon 2 produced liCTLA-4 while targeting exon 3 produced the sCTLA-4 form in NOD T cells. The liCTLA-4 expressing T cells exhibited reduced activation, proliferation and increased adhesion to intercellular adhesion molecule-1 (ICAM-1) similar to treatment with agonist α-CTLA-4. Mice treated to produce liCTLA-4 at the time of elevated blood glucose levels exhibited a significant reduction in the incidence of insulitis and diabetes, whereas a marked increase in the incidence of both was observed in animals treated to produce sCTLA-4. These findings provide further support that alternative splice forms of CTLA-4 affects diabetes susceptibility in NOD mice and demonstrates the therapeutic utility of antisense mediated splice-switching for modulating immune responses.
    Nucleic acid therapeutics. 02/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cell signaling is triggered through stimulation of the T cell receptor and costimulatory receptors. Receptor activation leads to the formation of membrane-proximal protein microclusters. These clusters undergo tyrosine phosphorylation and organize multiprotein complexes thereby acting as molecular signaling platforms. Little is known about how the quantity and phosphorylation levels of microclusters are affected by costimulatory signals and the activity of specific signaling proteins. We combined micrometer-sized, microcontact printed, striped patterns of different stimuli and simultaneous analysis of different cell strains with image processing protocols to address this problem. First, we validated the stimulation protocol by showing that high expression levels CD28 result in increased cell spreading. Subsequently, we addressed the role of costimulation and a specific phosphotyrosine phosphatase in cluster formation by including a SHP2 knock-down strain in our system. Distinguishing cell strains using carboxyfluorescein succinimidyl ester enabled a comparison within single samples. SHP2 exerted its effect by lowering phosphorylation levels of individual clusters while CD28 costimulation mainly increased the number of signaling clusters and cell spreading. These effects were observed for general tyrosine phosphorylation of clusters and for phosphorylated PLCγ1. Our analysis enables a clear distinction between factors determining the number of microclusters and those that act on these signaling platforms.
    PLoS ONE 01/2013; 8(10):e79277. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis, and its capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and protective vaccines. We formulated a novel nanovaccine containing meningococcal CPS as an antigen encapsulated in albumin-based nanoparticles (NPs) that does not require chemical conjugation to a protein carrier. These nanoparticles are taken up by antigen-presenting cells and act as antigen depot by slowly releasing the antigen. In this study, we determined the ability of CPS-loaded vaccine nanoparticles to induce co-stimulatory molecules, namely CD80, CD86, and CD95 that impact effective antigen presentation. Co-stimulatory molecule gene induction and surface expression on macrophages and dendritic cells pulsed with meningococcal CPS-loaded nanoparticles were investigated using gene array and flow cytometry methods. Meningococcal CPS-loaded NP significantly induced the surface protein expression of CD80 and CD86, markers of dendritic cell maturation, in human THP-1 macrophages and in murine dendritic cells DC2.4 in a dose-dependent manner. The massive upregulation was also observed at the gene expression. However, high dose of CPS-loaded NP, but not empty NP, induced the expression of death receptor CD95 (Fas) leading to reduced TNF-α release and reduction in cell viability. The data suggest that high expression of CD95 may lead to death of antigen-presenting cells and consequently suboptimal immune responses to vaccine. The CPS-loaded NP induces the expression of co-stimulatory molecules and acts as antigen depot and can spare antigen dose, highly desirable criteria for vaccine formulations.
    The AAPS Journal 07/2014; · 4.39 Impact Factor

Full-text (2 Sources)

Download
7 Downloads
Available from
May 27, 2014