Article

The trans-Golgi SNARE syntaxin 6 is recruited to the chlamydial inclusion membrane

Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, MT 59840, USA.
Microbiology (Impact Factor: 3.06). 11/2010; 157(Pt 3):830-8. DOI: 10.1099/mic.0.045856-0
Source: PubMed

ABSTRACT Chlamydia trachomatis is an obligate intracellular pathogen that replicates within a parasitophorous vacuole termed an inclusion. The chlamydial inclusion is isolated from the endocytic pathway but fusogenic with Golgi-derived exocytic vesicles containing sphingomyelin and cholesterol. Sphingolipids are incorporated into the chlamydial cell wall and are considered essential for chlamydial development and viability. The mechanisms by which chlamydiae obtain eukaryotic lipids are poorly understood but require chlamydial protein synthesis and presumably modification of the inclusion membrane to initiate this interaction. A polarized cell model of chlamydial infection has demonstrated that chlamydiae preferentially intercept basolaterally directed, sphingomyelin-containing exocytic vesicles. Here we examine the localization and potential function of trans-Golgi and/or basolaterally associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in chlamydia-infected cells. The trans-Golgi SNARE protein syntaxin 6 is recruited to the chlamydial inclusion in a manner that requires chlamydial protein synthesis and is conserved among all chlamydial species examined. The localization of syntaxin 6 to the chlamydial inclusion requires a tyrosine motif or plasma membrane retrieval signal (YGRL). Thus in addition to expression of at least two inclusion membrane proteins that contain SNARE-like motifs, chlamydiae also actively recruit eukaryotic SNARE-family proteins.

0 Bookmarks
 · 
142 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydia, a major human bacterial pathogen, assumes effective strategies to protect infected cells against death-inducing stimuli, thereby ensuring completion of its developmental cycle. Paired with its capacity to cause extensive host DNA damage, this poses a potential risk of malignant transformation, consistent with circumstantial epidemiological evidence. Here we reveal a dramatic depletion of p53, a tumor suppressor deregulated in many cancers, during Chlamydia infection. Using biochemical approaches and live imaging of individual cells, we demonstrate that p53 diminution requires phosphorylation of Murine Double Minute 2 (MDM2; a ubiquitin ligase) and subsequent interaction of phospho-MDM2 with p53 before induced proteasomal degradation. Strikingly, inhibition of the p53-MDM2 interaction is sufficient to disrupt intracellular development of Chlamydia and interferes with the pathogen's anti-apoptotic effect on host cells. This highlights the dependency of the pathogen on a functional MDM2-p53 axis and lends support to a potentially pro-carcinogenic effect of chlamydial infection.
    Nature Communications 11/2014; 5:5201. DOI:10.1038/ncomms6201 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding how host proteins are targeted to pathogen-specified organelles, like the chlamydial inclusion, is fundamentally important to understanding the biogenesis of these unique subcellular compartments and how they maintain autonomy within the cell. Syntaxin 6, which localizes to the chlamydial inclusion, contains an YGRL signal sequence. The YGRL functions to return syntaxin 6 to the trans-Golgi from the plasma membrane, and deletion of the YGRL signal sequence from syntaxin 6 also prevents the protein from localizing to the chlamydial inclusion. YGRL is one of three YXXL (YGRL, YQRL, and YKGL) signal sequences which target proteins to the trans-Golgi. We designed various constructs of eukaryotic proteins to test the specificity and propensity of YXXL sequences to target the inclusion. The YGRL signal sequence redirects proteins (e.g., Tgn38, furin, syntaxin 4) that normally do not localize to the chlamydial inclusion. Further, the requirement of the YGRL signal sequence for syntaxin 6 localization to inclusions formed by different species of Chlamydia is conserved. These data indicate that there is an inherent property of the chlamydial inclusion, which allows it to recognize the YGRL signal sequence. To examine whether this "inherent property" was protein or lipid in nature, we asked if deletion of the YGRL signal sequence from syntaxin 6 altered the ability of the protein to interact with proteins or lipids. Deletion or alteration of the YGRL from syntaxin 6 does not appreciably impact syntaxin 6-protein interactions, but does decrease syntaxin 6-lipid interactions. Intriguingly, data also demonstrate that YKGL or YQRL can successfully substitute for YGRL in localization of syntaxin 6 to the chlamydial inclusion. Importantly and for the first time, we are establishing that a eukaryotic signal sequence targets the chlamydial inclusion.
    Frontiers in Cellular and Infection Microbiology 09/2014; 4:129. DOI:10.3389/fcimb.2014.00129 · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydia is an obligate intracellular pathogen that develops in the host cell in a vacuole termed the chlamydial inclusion. The prevailing concept of the chlamydial inclusion is of a parasitophorous vacuole. Here, the inclusion is the recipient of one-way host-pathogen interactions thus draining nutrients from the cell and negatively impacting it. While Chlamydia orchestrates some aspects of cell function, recent data indicate host cells remain healthy up until, and even after, chlamydial egress. Thus, while Chlamydia relies on the host cell for necessary metabolites, the overall function of the host cell, during chlamydial growth and development, is not grossly disturbed. This is consistent with the obligate intracellular organism's interest to maintain viability of its host. To this end, Chlamydia expresses inclusion membrane proteins, Incs, which serve as molecular markers for the inclusion membrane. Incs also contribute to the physical structure of the inclusion membrane and facilitate host-pathogen interactions across it. Given the function of Incs and the dynamic interactions that occur at the inclusion membrane, we propose that the inclusion behaves similarly to an organelle-albeit one that benefits the pathogen. We present the hypothesis that the chlamydial inclusion acts as a pathogen-specified parasitic organelle. This representation integrates the inclusion within existing subcellular trafficking pathways to divert a subset of host-derived metabolites thus maintaining host cell homeostasis. We review the known interactions of the chlamydial inclusion with the host cell and discuss the role of Inc proteins in the context of this model and how this perspective can impact the study of these proteins. Lessons learnt from the chlamydial pathogen-specified parasitic organelle can be applied to other intracellular pathogens. This will increase our understanding of how intracellular pathogens engage the host cell to establish their unique developmental niches.
    Frontiers in Cellular and Infection Microbiology 10/2014; 4:157. DOI:10.3389/fcimb.2014.00157 · 2.62 Impact Factor

Preview (2 Sources)

Download
2 Downloads
Available from