Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages

Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
Journal of Controlled Release (Impact Factor: 7.26). 11/2010; 150(2):204-11. DOI: 10.1016/j.jconrel.2010.11.019
Source: PubMed

ABSTRACT Long-term antiretroviral therapy (ART) for human immunodeficiency virus type one (HIV-1) infection shows limitations in pharmacokinetics and biodistribution while inducing metabolic and cytotoxic aberrations. In turn, ART commonly requires complex dosing schedules and leads to the emergence of viral resistance and treatment failures. We posit that the development of nanoformulated ART could preclude such limitations and affect improved clinical outcomes. To this end, we wet-milled 20 nanoparticle formulations of crystalline indinavir, ritonavir, atazanavir, and efavirenz, collectively referred to as "nanoART," then assessed their performance using a range of physicochemical and biological tests. These tests were based on cell-nanoparticle interactions using monocyte-derived macrophages and their abilities to uptake and release nanoformulated drugs and affect viral replication. We demonstrate that physical characteristics such as particle size, surfactant coating, surface charge, and most importantly shape are predictors of cell uptake and antiretroviral efficacy. These studies bring this line of research a step closer to developing nanoART that can be used in the clinic to affect the course of HIV-1 infection.

Download full-text


Available from: Upal Roy, Apr 14, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efavirenz (EFV) is one of the first-line antiretroviral drugs recommended by the World Health Organisation for treating HIV. It is a hydrophobic drug that suffers from low aqueous solubility (4 μg/mL), which leads to a limited oral absorption and low bioavailability. In order to improve its oral bioavailability, nano-sized polymeric delivery systems are suggested. Spray dried polycaprolactone-efavirenz (PCL-EFV) nanoparticles were prepared by the double emulsion method. The Taguchi method, a statistical design with an L8 orthogonal array, was implemented to optimise the formulation parameters of PCL-EFV nanoparticles. The types of sugar (lactose or trehalose), surfactant concentration and solvent (dichloromethane and ethyl acetate) were chosen as significant parameters affecting the particle size and polydispersity index (PDI). Small nanoparticles with an average particle size of less than 254 ± 0.95 nm in the case of ethyl acetate as organic solvent were obtained as compared to more than 360 ± 19.96 nm for dichloromethane. In this study, the type of solvent and sugar were the most influencing parameters of the particle size and PDI. Taguchi method proved to be a quick, valuable tool in optimising the particle size and PDI of PCL-EFV nanoparticles. The optimised experimental values for the nanoparticle size and PDI were 217 ± 2.48 nm and 0.093 ± 0.02.
    Journal of Nanoparticle Research 11/2012; 14(11). DOI:10.1007/s11051-012-1247-0 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galectin-1, an adhesion molecule, is expressed in macrophages and implicated in human immunodeficiency virus (HIV-1) viral adsorption. In this study, we investigated the effects of methamphetamine on galectin-1 production in human monocyte derived macrophages (MDM) and the role of galectin-1 in methamphetamine potentiation of HIV-1 infection. Herein we show that levels of galectin-1 gene and protein expression are significantly increased by methamphetamine. Furthermore, concomitant incubation of MDM with galectin-1 and methamphetamine facilitates HIV-1 infection compared to galectin-1 alone or methamphetamine alone. We utilized a nanotechnology approach that uses gold nanorod (GNR)-galectin-1 siRNA complexes (nanoplexes) to inhibit gene expression for galectin-1. Nanoplexes significantly silenced gene expression for galectin-1 and reversed the effects of methamphetamine on galectin-1 gene expression. Moreover, the effects of methamphetamine on HIV-1 infection were attenuated in the presence of the nanoplex in MDM.
    Journal of Neuroimmune Pharmacology 06/2012; 7(3):673-85. DOI:10.1007/s11481-012-9379-7 · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoformulations of crystalline indinavir, ritonavir, atazanavir, and efavirenz were manufactured by wet milling, homogenization or sonication with a variety of excipients. The chemical, biological, immune, virological, and toxicological properties of these formulations were compared using an established monocyte-derived macrophage scoring indicator system. Measurements of drug uptake, retention, release, and antiretroviral activity demonstrated differences amongst preparation methods. Interestingly, for drug cell targeting and antiretroviral responses the most significant difference among the particles was the drug itself. We posit that the choice of drug and formulation composition may ultimately affect clinical utility.
    International Journal of Nanomedicine 12/2011; 6:3393-404. DOI:10.2147/IJN.S27830 · 4.20 Impact Factor