Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages

Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
Journal of Controlled Release (Impact Factor: 7.71). 11/2010; 150(2):204-11. DOI: 10.1016/j.jconrel.2010.11.019
Source: PubMed

ABSTRACT Long-term antiretroviral therapy (ART) for human immunodeficiency virus type one (HIV-1) infection shows limitations in pharmacokinetics and biodistribution while inducing metabolic and cytotoxic aberrations. In turn, ART commonly requires complex dosing schedules and leads to the emergence of viral resistance and treatment failures. We posit that the development of nanoformulated ART could preclude such limitations and affect improved clinical outcomes. To this end, we wet-milled 20 nanoparticle formulations of crystalline indinavir, ritonavir, atazanavir, and efavirenz, collectively referred to as "nanoART," then assessed their performance using a range of physicochemical and biological tests. These tests were based on cell-nanoparticle interactions using monocyte-derived macrophages and their abilities to uptake and release nanoformulated drugs and affect viral replication. We demonstrate that physical characteristics such as particle size, surfactant coating, surface charge, and most importantly shape are predictors of cell uptake and antiretroviral efficacy. These studies bring this line of research a step closer to developing nanoART that can be used in the clinic to affect the course of HIV-1 infection.

Download full-text


Available from: Upal Roy, Apr 14, 2014
1 Follower
24 Reads
  • Source
    • "Indeed, monocytes/macrophages may be an ideal physiological “shuttle” for brain delivery of antiretroviral drugs, due to their phagocytic nature, which allows extensive uptake (depending on coating, size, shape, and charge) and sustained release (for days to weeks) of different antiretroviral drug particles.103–105 Additionally, these immune cells possess the ability to readily migrate across the BBB or at least transfer their drug content to endothelial cells at the BBB, as recently shown in vitro (Figure 5).106 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Antiretroviral drug therapy plays a cornerstone role in the treatment of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome patients. Despite obvious advances over the past 3 decades, new approaches toward improved management of infected individuals are still required. Drug distribution to the central nervous system (CNS) is required in order to limit and control viral infection, but the presence of natural barrier structures, in particular the blood-brain barrier, strongly limits the perfusion of anti-HIV compounds into this anatomical site. Nanotechnology-based approaches may help providing solutions for antiretroviral drug delivery to the CNS by potentially prolonging systemic drug circulation, increasing the crossing and reducing the efflux of active compounds at the blood-brain barrier, and providing cell/tissue-targeting and intracellular drug delivery. After an initial overview on the basic features of HIV infection of the CNS and barriers to active compound delivery to this anatomical site, this review focuses on recent strategies based on antiretroviral drug-loaded solid nanoparticles and drug nanosuspensions for the potential management of HIV infection of the CNS.
    International Journal of Nanomedicine 04/2014; 9(1):1757-1769. DOI:10.2147/IJN.S45886 · 4.38 Impact Factor
  • Source
    • "The surface morphology of the nanoparticles was observed using scanning electron microscopy (FEI Quanta 200; Quanta Technology, LLC, Raleigh, NC, USA). The nanoparticles were placed in metal stubs and coated with gold using an ion sputter machine (JEOL, Tokyo, Japan) and visualized at 12 kV.17,18 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pharmaceutical suspension containing oral dosage forms delivering both immediate-release and sustained-release amoxicillin was developed as a new dosage form to eradicate Helicobacter pylori. Amoxicillin-loaded gelatin nanoparticles are able to bind with the mucosal membrane after delivery to the stomach and could escalate the effectiveness of a drug, providing dual release. The objective of this study was to develop amoxicillin nanoparticles using innovative new technology - the Büchi Nano Spray Dryer B-90 - and investigate such features as drug content, particle morphology, yield, in vitro release, flow properties, and stability. The nanoparticles had an average particle size of 571 nm. The drug content and percentage yield was 89.2% ± 0.5% and 93.3% ± 0.6%, respectively. Angle of repose of nanoparticle suspension was 26.3° and bulk density was 0.59 g/cm(3). In vitro drug release of formulations was best fitted by first-order and Peppas models with R (2) of 0.9841 and 0.9837 respectively; release profile was 15.9%, while; for the original drug, amoxicillin, under the same conditions, 90% was released in the first 30 minutes. The nanoparticles used in this study enabled sustained release of amoxicillin over an extended period of time, up to 12 hours, and were stable for 12 months under accelerated storage conditions of 25°C ± 2°C and 60% ± 5% relative humidity.
    Drug Design, Development and Therapy 09/2013; 7:1027-1033. DOI:10.2147/DDDT.S39956 · 3.03 Impact Factor
  • Source
    • "Previous studies have established effective and safe intracellular delivery of antiretroviral drugs into human peripheral blood mononuclear cells or human monocyte/macrophage by NPs.40,41 Further studies have also demonstrated favorable antiretroviral efficacy against HIV-1 when the drug is delivered into human monocyte-derived macrophages.42 Since unprotected heterosexual vaginal intercourse has become one of the major modes of transmission, there is an increasing interest in developing intravaginal microbicides against HIV infection. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The goal of this study was to develop and characterize an intravaginal nanomedicine for the active targeted delivery of saquinavir (SQV) to CD4(+) immune cells as a potential strategy to prevent or reduce HIV infection. The nanomedicine was formulated into a vaginal gel to provide ease in self-administration and to enhance retention within the vaginal tract. SQV-encapsulated nanoparticles (SQV-NPs) were prepared from poly(lactic-co-glycolic acid) (PLGA) and conjugated to antihuman anti-CD4 antibody. Antibody-conjugated SQV-NPs (Ab-SQV-NPs) had an encapsulation efficiency (EE%) of 74.4% + 3.7% and an antibody conjugation efficiency (ACE%) of 80.95% + 1.10%. Over 50% of total loaded SQV was released from NPs over 3 days. NPs were rapidly taken up by Sup-T1 cells, with more than a twofold increase in the intracellular levels of SQV when delivered by Ab-SQV-NPs in comparison to controls 1 hour post-treatment. No cytotoxicity was observed when vaginal epithelial cells were treated for 24 hours with drug-free Ab-NPs (1,000 μg/mL), 1% HEC placebo gel (200 mg/mL), or 1% HEC gel loaded with drug-free Ab-NPs (5 mg NPs/g gel, 200 mg/mL of gel mixture). Overall, we described an intravaginal nanomedicine that is nontoxic and can specifically deliver SQV into CD4(+) immune cells. This platform may demonstrate potential utility in its application as postexposure prophylaxis for the treatment or reduction of HIV infection, but further studies are required.
    International Journal of Nanomedicine 08/2013; 8:2847-58. DOI:10.2147/IJN.S46958 · 4.38 Impact Factor
Show more