Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation

Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY, USA.
Pflügers Archiv - European Journal of Physiology (Impact Factor: 3.07). 03/2011; 461(3):387-97. DOI: 10.1007/s00424-010-0904-3
Source: PubMed

ABSTRACT Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2) or PIP(2)] is a direct modulator of a diverse array of proteins in eukaryotic cells. The functional integrity of transmembrane proteins, such as ion channels and transporters, is critically dependent on specific interactions with PIP(2) and other phosphoinositides. Here, we report a novel requirement for PIP(2) in the activation of the epidermal growth factor receptor (EGFR). Down-regulation of PIP(2) levels either via pharmacological inhibition of PI kinase activity, or via manipulation of the levels of the lipid kinase PIP5K1α and the lipid phosphatase synaptojanin, reduced EGFR tyrosine phosphorylation, whereas up-regulation of PIP(2) levels via overexpression of PIP5K1α had the opposite effect. A cluster of positively charged residues in the juxtamembrane domain (basic JD) of EGFR is likely to mediate binding of EGFR to PIP(2) and PIP(2)-dependent regulation of EGFR activation. A peptide mimicking the EGFR juxtamembrane domain that was assayed by surface plasmon resonance displayed strong binding to PIP(2). Neutralization of positively charged amino acids abolished EGFR/PIP(2) interaction in the context of this peptide and down-regulated epidermal growth factor (EGF)-induced EGFR auto-phosphorylation and EGF-induced EGFR signaling to ion channels in the context of the full-length receptor. These results suggest that EGFR activation and downstream signaling depend on interactions of EGFR with PIP(2) and point to the basic JD's critical involvement in these interactions. The addition of this very different class of membrane proteins to ion channels and transporters suggests that PIP(2) may serve as a general modulator of the activity of many diverse eukaryotic transmembrane proteins through their basic JDs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Biosynthetic trafficking of receptors and other membrane-associated proteins from the endoplasmic reticulum (ER) to the plasma membrane (PM) underlies the capacity of these proteins to participate in crucial cellular roles. Phosphoinositides have been shown to mediate distinct biological functions in cells, and phosphatidylinositol 4-phosphate (PI4P), in particular, has emerged as a key regulator of biosynthetic trafficking. Results To investigate the source of PI4P that orchestrates trafficking events, we developed a novel flow cytometry based method to monitor biosynthetic trafficking of transiently transfected proteins. We demonstrated that our method can be used to assess the trafficking of both type-1 transmembrane and GPI-linked proteins, and that it can accurately monitor the pharmacological disruption of biosynthetic trafficking with brefeldin A, a well-documented inhibitor of early biosynthetic trafficking. Furthermore, utilizing our newly developed method, we applied pharmacological inhibition of different isoforms of PI 4-kinase to reveal a role for a distinct pool of PI4P, synthesized by PI4KIIIα, in ER-to-PM trafficking. Conclusions Taken together, these findings provide evidence that a specific pool of PI4P plays a role in biosynthetic trafficking of two different classes of proteins from the ER to the Golgi complex. Furthermore, our simple, flow cytometry-based biosynthetic trafficking assay can be widely applied to the study of multiple classes of proteins and varied pharmacological and genetic perturbations.
    BMC Cell Biology 02/2015; 16. DOI:10.1186/s12860-015-0049-5 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epidermal growth factor receptor (EGFR) is the best characterised member of the receptor tyrosine kinases, which play an important role in signalling across mammalian cell membranes. The EGFR juxtamembrane (JM) domain is involved in the mechanism of activation of the receptor, interacting with the anionic lipid phosphatidylinositol 4,5-bisphosphate (PIP2) in the intracellular leaflet of the cell membrane.
    Biochimica et Biophysica Acta (BBA) - General Subjects 09/2014; 1850(5). DOI:10.1016/j.bbagen.2014.09.006 · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Receptor tyrosine kinases (RTKs) play a critical role in diverse cellular processes and their activity is regulated by lipids in the surrounding membrane, including PIP2 (phosphatidylinositol-4,5-bisphosphate) in the inner leaflet, and GM3 (monosialodihexosylganglioside) in the outer leaflet. However, the precise details of the interactions at the molecular level remain to be fully characterised. Using a multiscale molecular dynamics simulation approach, we comprehensively characterise anionic lipid interactions with all 58 known human RTKs. Our results demonstrate that the juxtamembrane (JM) regions of RTKs are critical for inducing clustering of anionic lipids, including PIP2, both in simple asymmetric bilayers, and in more complex mixed membranes. Clustering is predominantly driven by interactions between a conserved cluster of basic residues within the first five positions of the JM region, and negatively charged lipid headgroups. This highlights a conserved interaction pattern shared across the human RTK family. In particular predominantly the N-terminal residues of the JM region are involved in the interactions with PIP2, whilst residues within the distal JM region exhibit comparatively less lipid specificity. Our results suggest that JM-lipid interactions play a key role in RTK structure and function, and more generally in the nanoscale organisation of receptor-containing cell membranes.

Full-text (2 Sources)

Available from
Jun 3, 2014