FOXP3, IL-10, and TGF-β genes expression in children with IgE-dependent food allergy

Department of Pediatric Allergology, Gastroenterology and Nutrition, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland.
Journal of Clinical Immunology (Impact Factor: 3.18). 11/2010; 31(2):205-15. DOI: 10.1007/s10875-010-9487-1
Source: PubMed


Regulatory T cells (Tregs) have an essential role in tolerance and immune regulation. However, few and controversial data have been published to date on the role and number of these cells in food allergic children. The forkhead/winged-helix transcription factor box protein 3 (FOXP3) is considered the most reliable marker for Tregs.
This study aims to investigate the FOXP3, interleukin (IL)-10, and transforming growth factor (TGF-β) genes expression in children with IgE-dependent food allergy.
The study group consisted of 54 children with IgE-dependent food allergy (FA) and a control group of 26 non-atopic healthy children. The diagnosis of FA was established using questionnaires, clinical criteria, skin prick tests, serum sIgE antibodies (UniCAP 100 Pharmacia Upjohn), and a double-blind placebo control food challenge. In order to assess gene expression, the isolation of nucleated cells was performed using Histopaque-1077 (Sigma-Aldrich, Germany). The concentration of RNA obtained was measured using a super-sensitive NanoDrop ND1000 spectrophotometer (Thermo Scientific, USA). A reverse transcription reaction was performed using a commercially available set of High Capacity cDNA Archive Kit (Applied Biosystems, USA). Analysis have been carried out in the genetic analyzer 7900HT Real-Time PCR (Applied Biosystems, USA).
The average level of the FOXP3 gene expression in the studied group was 2.19 ± 1.16 and in the control group 2.88 ± 1.66 (p = 0.03). The average level of IL10 mRNA expression in the study group was 13.6 ± 1.07 and was significantly lower than corresponding values in the control group 14.3 ± 1.1 (p = 0.01). There were no significant differences in the average level of the TGF-β mRNA expression in the study group (3.4 ± 0.4) and controls (3.5 ± 0.3; p > 0.05). The FOXP3 gene expression was the highest in children who acquired tolerance to food (3.54 ± 0.75), lower in heated allergen-tolerant children (2.43 ± 0.81), and the lowest in heated allergen-reactive children (1.18 ± 0.5; p = 0.001 control vs heated allergen reactive; p = 0.005 heated allergen tolerant vs heated allergen reactive; p = 0.001 outgrown vs heated allergen reactive). The significant tendency toward lower total IgE levels with a higher FOXP3 mRNA expression was detected (n = 54; Pearson r = -0.4393; p = 0.001).
Children with FA showed statistically significant lower level of the FOXP3 and IL10 gene expression than healthy children. Children acquiring tolerance to the food show significantly higher levels of the FOXP3 gene expression than children with active FA. The correlation between the level of FOXP3 and total IgE was detected.

Download full-text


Available from: Maciej Borowiec, Oct 05, 2015
35 Reads
  • Source
    • "Recent studies indicate that Foxp3+ T regulatory cells may play a protective role in food allergy, and Foxp3 is considered an immunophenotype marker of T regulatory cells. In a recent report Krogulska et al. [16] suggested a possible protective role of Foxp3 and IL-10 in food allergy, where the expression of these genes was up-regulated in children who were developing tolerance to allergenic foods. Another recent report however, contradict to such tolerogenic effects of Foxp3 in food allergy, where Foxp3 along with Nfat-C2, IL-16 and Gata-3 genes were reported to up-regulated in children with persisting cow's milk allergy [17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Food allergy is a serious health concern among infants and young children. Although immunological mechanism of food allergy is well documented, the molecular mechanism(s) involved in food allergen sensitization have not been well characterized. Therefore, the present study analyzed the mesenteric lymph node (MLN) transcriptome profiles of BALB/c mice in response to three common food allergens. Microarray analysis identified a total of 1361, 533 and 488 differentially expressed genes in response to β-lactoglobulin (BLG) from cow's milk, ovalbumin (OVA) from hen's egg white and peanut agglutinin (PNA) sensitizations, respectively (p < 0.05). A total of 150 genes were commonly expressed in all antigen sensitized groups. The expression of seven representative genes from microarray experiment was validated by real-time RT-PCR. All allergens induced significant ear swelling and serum IgG1 concentrations, whereas IgE concentrations were increased in BLG- and PNA-treated mice (p < 0.05). Treatment with OVA and PNA significantly induced plasma histamine concentrations (p < 0.05). The PCA demonstrated the presence of allergen-specific IgE in the serum of previously sensitized and challenged mice. Immunological profiles indicate that the allergen dosages used are sufficient to sensitize the BALB/c mice and to conduct transcriptome profiling. Microarray studies identified several differentially expressed genes in the sensitization phase of the food allergy. These findings will help to better understand the underlying molecular mechanism(s) of food allergen sensitizations and may be useful in identifying the potential biomarkers of food allergy.
    BMC Genomics 01/2011; 12(1):12. DOI:10.1186/1471-2164-12-12 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. Microarray analysis provided transcriptomic evidence for N- but not P-limitation in K. brevis. Transcriptomic responses to the addition of either N or P suggest a concerted program leading to the reactivation of chloroplast functions. Even the earliest responding PPR protein transcripts possess a 5' SL sequence that suggests post-transcriptional control. Given the current state of knowledge of dinoflagellate gene regulation, it is currently unclear how these rapid changes in such transcript levels are achieved.
    BMC Genomics 07/2011; 12(1):346. DOI:10.1186/1471-2164-12-346 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Faecal microbiota of healthy infant displays a large abundance of Bifidobacterium spp. and Bacteroides spp. Although some studies have reported an association between these two genera and allergy, these findings remain a subject of debate. Using a gnotobiotic mouse model of cow's milk allergy, we investigated the impact of an infant gut microbiota – mainly composed of Bifidobacterium and Bacteroides spp. – on immune activation and allergic manifestations. The transplanted microbiota failed to restore an ileal T-cell response similar to the one observed in conventional mice. This may be due to the low bacterial translocation into Peyer's patches in gnotobiotic mice. The allergic response was then monitored in germ-free, gnotobiotic, and conventional mice after repeated oral sensitization with whey proteins and cholera toxin. Colonized mice displayed a lower drop of rectal temperature upon oral challenge with b-lactoglobulin, lower plasma mMCP-1, and lower anti-BLG IgG1 than germ-free mice. The foxp3 gene was highly expressed in the ileum of both colonized mice that were protected against allergy. This study is the first demonstration that a transplanted healthy infant microbiota mainly composed of Bifidobacterium and Bacteroides had a protective impact on sensitization and food allergy in mice despite altered T-cell response in the ileum.
    FEMS Microbiology Ecology 01/2012; 79(1):192-202. DOI:10.1111/j.1574-6941.2011.01207.x · 3.57 Impact Factor
Show more

Similar Publications