A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, HuaZhong Normal University, Wuhan 430079, China.
Plant Cell Reports (Impact Factor: 3.07). 11/2010; 30(4):463-71. DOI: 10.1007/s00299-010-0952-3
Source: PubMed


Cold stress, which causes dehydration damage to the plant cell, is one of the most common abiotic stresses that adversely affect plant growth and crop productivity. To improve its cold-tolerance, plants often enhance expression of some cold-related genes. In this study, a cold-regulated gene encoding 25 KDa of protein was isolated from Brassica napus cDNA library using a macroarray analysis, and is consequently designated as BnCOR25. RT-PCR analysis demonstrated that BnCOR25 was expressed at high levels in hypocotyls, cotyledons, stems, and flowers, but its mRNA was found at low levels in roots and leaves. Northern blot analysis revealed that BnCOR25 transcripts were significantly induced by cold and osmotic stress treatment. The data also showed that BnCOR25 gene expression is mediated by ABA-dependent pathway. Overexpression of BnCOR25 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival probability under cold stress, and overexpression of BnCOR25 in Arabidopsis enhances plant tolerance to cold stress. These results suggested that the BnCOR25 gene may play an important role in conferring freezing/cold tolerance in plants.

7 Reads
  • Source
    • " Toyobo , Osaka , Japan ) was applied in the detection system . Real - time PCR reaction was performed using the Real - time PCR Master Mix ( Toyobo ) according to the manual . The Actin gene was used as an internal control to normalize the data . Relative quantity of the target gene expression level was performed using the comparative Ct method ( Chen et al . , 2011 ) . For crude anti - oxidative enzyme extraction , 0 . 3 g of fresh leaves were ground to a fine powder in liquid nitrogen and then mixed with 4 mL sodium phosphate buffer ( 150 mM , pH 7 . 0 ) and treated with pre - cooling at 4 °C . The homogenate was transferred into a 10 - mL centrifuge tube and then centrifuged for 20 min with 13 ,"
    [Show abstract] [Hide abstract]
    ABSTRACT: Cold stress is a key factor limiting resource use in bermudagrass (Cynodon dactylon). Under cold stress, bermudagrass growth is severely inhibited and the leaves undergo chlorosis. Therefore, rigorous investigation on the physiological and molecular mechanisms of cold stress in this turf species is urgent. The objective of this study was to investigate the physiological and molecular alteration in wild bermudagrass under cold stress, particularly the changes of transpiration rate, soluble sugar content, enzyme activities, and expression of antioxidant genes. Wild bermudagrass (C. dactylon) was planted in plastic pots (each 10 cm tall and 8 cm in diameter) filled with matrix (brown coal soil:sand 1:1) and treated with 4°C in a growth chamber. The results displayed a dramatic decline in the growth and transpiration rates of the wild bermudagrass under 4°C temperature. Simultaneously, cold severely destabilized the cell membrane as indicated by increased malondialdehyde content and electrolyte leakage value. Superoxide dismutase and peroxidase activities were higher in the cold regime than the control. The expression of antioxidant genes including MnSOD, Cu/ZnSOD, POD, and APX was vividly up-regulated after cold stress. In summary, our results contributed to the understanding of the role of the antioxidant system in bermudagrass’ response to cold. © 2014 by the American Society for Horticultural Science. All rights reserved.
    Journal of the American Society for Horticultural Science. American Society for Horticultural Science 01/2015; 139(6):1-7. · 1.28 Impact Factor
  • Source
    • "BnCOR25 gene from B. napus was weakly expressed in leaves or roots and strong expressed in flowers, stems, hypocotyls and cotyledons using RT-PCR analysis. BnCOR25 gene transcripts were highly accumulated in roots during cold treatment (Chen et al., 2011). "

    International Journal of Agriculture and Biology 01/2015; DOI:10.17957/IJAB/15.0093 · 0.90 Impact Factor
  • Source
    • "In plant cells, extracellular freezing damages membrane systems . This damage is largely due to the acute dehydration associated with freezing (Mahajan and Tuteja 2005; Chen et al. 2011). Reactive oxygen species (ROS) that are produced in response to cold stress may contribute to membrane damage. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Antarctica is one of the most extreme environments on Earth. Deschampsia antarctica Desv. is the only monocot vascular plant that colonizes the Antarctic Peninsula. The survival of this species in this harsh environment suggests that this plant possesses genes associated with cold and UV tolerance. Using suppression subtractive hybridization, we identified a total of 112 differentially expressed genes under cold and UV irradiance conditions. Northern blot analysis and real-time RT-PCR confirmed expression differences among several genes. Using similarity search analysis, we identified a number of genes that have not been previously reported. The results showed that cold and UV radiation mainly induce the expression of genes related to transcription, energy and defense response. Interestingly, part of the isolated genes corresponds to unknown or hypothetical proteins. This set of tolerance-related genes could be relevant to uncover the mechanisms by which this extremophile survives in its environment and contribute to the development of biotechnology in Antarctic species.
    Polar Biology 12/2012; 36(3). DOI:10.1007/s00300-012-1271-7 · 1.59 Impact Factor
Show more

Similar Publications