Article

Expression of αvβ8 integrin on dendritic cells regulates Th17 cell development and experimental autoimmune encephalomyelitis in mice.

Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA.
The Journal of clinical investigation (Impact Factor: 15.39). 12/2010; 120(12):4436-44. DOI: 10.1172/JCI43786
Source: PubMed

ABSTRACT Th17 cells promote a variety of autoimmune diseases, including psoriasis, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. TGF-β is required for conversion of naive T cells to Th17 cells, but the mechanisms regulating this process are unknown. Integrin αvβ8 on DCs can activate TGF-β, and this process contributes to the development of induced Tregs. Here, we have now shown that integrin αvβ8 expression on DCs plays a critical role in the differentiation of Th17 cells. Th17 cells were nearly absent in the colons of mice lacking αvβ8 expression on DCs. In addition, these mice and the DCs harvested from them had an impaired ability to convert naive T cells into Th17 cells in vivo and in vitro, respectively. Importantly, mice lacking αvβ8 on DCs showed near-complete protection from experimental autoimmune encephalomyelitis. Our results therefore suggest that the integrin αvβ8 pathway is biologically important and that αvβ8 expression on DCs could be a therapeutic target for the treatment of Th17-driven autoimmune disease.

1 Bookmark
 · 
79 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cytokine TGF-β plays an integral role in regulating immune responses. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of effector and regulatory CD4+ T cell responses. Many immune and nonimmune cells can produce TGF-β, but it is always produced as an inactive complex that must be activated to exert functional effects. Thus, activation of latent TGF-β provides a crucial layer of regulation that controls TGF-β function. In this review, we highlight some of the important functional roles for TGF-β in immunity, focusing on its context-specific roles in either dampening or promoting T cell responses. We also describe how activation of TGF-β controls its function in the immune system, with a focus on the key roles for members of the integrin family in this process. Expected final online publication date for the Annual Review of Immunology Volume 32 is March 21, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Immunology 12/2013; · 36.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic intestinal parasite infection is a major global health problem, but mechanisms that promote chronicity are poorly understood. Here we describe a novel cellular and molecular pathway involved in the development of chronic intestinal parasite infection. We show that, early during development of chronic infection with the murine intestinal parasite Trichuris muris, TGFβ signalling in CD4+ T-cells is induced and that antibody-mediated inhibition of TGFβ function results in protection from infection. Mechanistically, we find that enhanced TGFβ signalling in CD4+ T-cells during infection involves expression of the TGFβ-activating integrin αvβ8 by dendritic cells (DCs), which we have previously shown is highly expressed by a subset of DCs in the intestine. Importantly, mice lacking integrin αvβ8 on DCs were completely resistant to chronic infection with T. muris, indicating an important functional role for integrin αvβ8-mediated TGFβ activation in promoting chronic infection. Protection from infection was dependent on CD4+ T-cells, but appeared independent of Foxp3+ Tregs. Instead, mice lacking integrin αvβ8 expression on DCs displayed an early increase in production of the protective type 2 cytokine IL-13 by CD4+ T-cells, and inhibition of this increase by crossing mice to IL-4 knockout mice restored parasite infection. Our results therefore provide novel insights into how type 2 immunity is controlled in the intestine, and may help contribute to development of new therapies aimed at promoting expulsion of gut helminths.
    PLoS Pathogens 10/2013; 9(10):e1003675. · 8.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined the regulatory role of αv integrins in the development of Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), a model of multiple sclerosis (MS). Blockade of αv integrins by anti-αv integrin monoclonal antibody (mAb) in the effector phase significantly suppressed the development of TMEV-IDD both clinically and histologically. The number of infiltrating mononuclear cells (MNCs) in the CNS was significantly decreased in mice treated with anti-αv integrin mAb. Flow cytometric analysis of cytokine staining revealed that absolute numbers of IFN-γ- and IL-17-producing CD4 + and IFN-γ-producing CD8 + T cells were significantly decreased in the CNS of mice treated with anti-αv integrin mAb. These data suggest that αv integrins may play important roles in the development of TMEV-IDD.
    Journal of Neuroimmunology. 01/2014;

Full-text (2 Sources)

View
11 Downloads
Available from
Jun 1, 2014

Similar Publications