Article

A proton current drives action potentials in genetically identified sour taste cells

Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 12/2010; 107(51):22320-5. DOI: 10.1073/pnas.1013664107
Source: PubMed

ABSTRACT Five tastes have been identified, each of which is transduced by a separate set of taste cells. Of these sour, which is associated with acid stimuli, is the least understood. Genetic ablation experiments have established that sour is detected by a subset of taste cells that express the TRP channel PKD2L1 and its partner PKD1L3, however the mechanisms by which this subset of cells detects acids remain unclear. Previous efforts to understand sour taste transduction have been hindered because sour responsive cells represent only a small fraction of cells in a taste bud, and numerous ion channels with no role in sour sensing are sensitive to acidic pH. To identify acid-sensitive conductances unique to sour cells, we created genetically modified mice in which sour cells were marked by expression of YFP under the control of the PKD2L1 promoter. To measure responses to sour stimuli we developed a method in which suction electrode recording is combined with UV photolysis of NPE-caged proton. Using these methods, we report that responses to sour stimuli are not mediated by Na(+) permeable channels as previously thought, but instead are mediated by a proton conductance specific to PKD2L1-expressing taste cells. This conductance is sufficient to drive action potential firing in response to acid stimuli, is enriched in the apical membrane of PKD2L1-expressing taste cells and is not affected by targeted deletion of the PKD1L3 gene. We conclude that, during sour transduction, protons enter through an apical proton conductance to directly depolarize the taste cell membrane.

1 Follower
 · 
128 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.
    Handbook of experimental pharmacology 01/2014; 223:827-71. DOI:10.1007/978-3-319-05161-1_5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels.
    Pflügers Archiv - European Journal of Physiology 08/2014; DOI:10.1007/s00424-014-1590-3 · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Taste enables organisms to determine the properties of ingested substances by conveying information regarding the five basic taste modalities: sweet, salty, sour, bitter, and umami. The sweet, salty, and umami taste modalities convey the carbohydrate, electrolyte, and glutamate content of food, indicating its desirability and stimulating appetitive responses. The sour and bitter modalities convey the acidity of food and the presence of potential toxins, respectively, stimulating aversive responses to such tastes. In recent years, the receptors mediating sweet, bitter, and umami tastes have been identified as members of the T1R and T2R G-protein-coupled receptor families; however, the molecular mechanisms underlying sour taste detection have yet to be clearly elucidated. This review covers the molecular mechanisms proposed to mediate the detection and transmission of sour stimuli, focusing on polycystic kidney disease 1-like 3 (Pkd1l3), Pkd2l1, and carbonic anhydrase 4 (Car4).
    Bioscience Biotechnology and Biochemistry 11/2014; 79(2):1-6. DOI:10.1080/09168451.2014.975187 · 1.21 Impact Factor

Full-text (2 Sources)

Download
42 Downloads
Available from
May 19, 2014