Article

Eriodictyol inhibits RSK2-ATF1 signaling and suppresses EGF-induced neoplastic cell transformation.

Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 01/2011; 286(3):2057-66. DOI: 10.1074/jbc.M110.147306
Source: PubMed

ABSTRACT RSK2 is a widely expressed serine/threonine kinase, and its activation enhances cell proliferation. Here, we report that ATF1 is a novel substrate of RSK2 and that RSK2-ATF1 signaling plays an important role in EGF-induced neoplastic cell transformation. RSK2 phosphorylated ATF1 at Ser-63 and enhanced ATF1 transcriptional activity. Docking experiments using the crystal structure of the RSK2 N-terminal kinase domain combined with in vitro pulldown assays demonstrated that eriodictyol, a flavanone found in fruits, bound with the N-terminal kinase domain of RSK2 to inhibit RSK2 N-terminal kinase activity. In cells, eriodictyol inhibited phosphorylation of ATF1 but had no effect on the phosphorylation of RSK, MEK1/2, ERK1/2, p38 or JNKs, indicating that eriodictyol specifically suppresses RSK2 signaling. Furthermore, eriodictyol inhibited RSK2-mediated ATF1 transactivation and tumor promoter-induced transformation of JB6 Cl41 cells. Eriodictyol or knockdown of RSK2 or ATF1 also suppressed Ras-mediated focus formation. Overall, these results indicate that RSK2-ATF1 signaling plays an important role in neoplastic cell transformation and that eriodictyol is a novel natural compound for suppressing RSK2 kinase activity.

0 Bookmarks
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RSK2 is a p90 ribosomal S6 kinase family (p90(RSK)) member regulating cell proliferation and transformation induced by tumor promoters such as epithelial growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate. This family of p90(RSK) has classified as a serine/threonine kinase that respond to many growth factors, peptide hormones, neurotransmitters, and environmental stresses such as ultraviolet (UV) light. Our recent study demonstrates that RSK2 plays a key role in human skin cancer development. Activation of RSK2 by EGF and UV through extracellular-activated protein kinases signaling pathway induces cell cycle progression, cell proliferation, and anchorage-independent cell transformation. Moreover, knockdown of RSK2 by si-RNA or sh-RNA abrogates cell proliferation and cell transformation of non-malignant human skin keratinocyte, and colony growth of malignant melanoma (MM) cells in soft agar. Importantly, activated and total RSK2 protein levels are highly detected in human skin cancer tissues including squamous cell carcinoma, basal-cell carcinoma, and MM. Kaempferol and eriodictyol are natural substances to inhibit kinase activity of the RSK2 N-terminal kinase domain, which is a critical kinase domain to transduce their activation signals to the substrates by phosphorylation. In this review, we discuss the role of RSK2 in skin cancer, particularly in activation of signaling pathways and potent natural substances to target RSK2 as chemopreventive and therapeutic agents.
    Frontiers in Oncology 01/2013; 3:201.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitogen-activated protein kinases (MAPKs) play a key role in cell proliferation, cell cycle progression and cell transformation, and activated Ras/ERKs/RSK2 signaling pathways have been widely identified in many solid tumors. In this study, we found that magnolin, a compound found in the Magnolia species, directly targeted and inhibited ERK1 and ERK2 kinase activities with IC50 values of 87 nM and 16.5 nM, by competing with ATP in an active pocket. Further, we demonstrated that magnolin inhibited EGF-induced p90RSKs phosphorylation at Thr359/Ser363, but not ERKs phosphorylation at Thr202/Tyr204, and this resulted in inhibition of cell proliferation by suppression of the G1/S cell cycle transition. Additionally, p38 kinases, Jun N-terminal kinases, and Akts were not involved in the magnolin-mediated inhibitory signaling. Magnolin targeting of ERK1 and 2 activities suppressed the phosphorylation of RSK2 and downstream target proteins including ATF1 and c-Jun and AP-1, a dimer of Jun/Fos, and the transactivation activities of ATF1 and AP-1. Notably, ERKs inhibition by magnolin suppressed EGF-induced anchorage-independent cell transformation and colony growth of Ras(G12V)- harboring A549 human lung cancer cells and NIH3T3 cells stably expressing Ras(G12V) in soft agar. Taken together, these results demonstrated that magnolin might be a naturally occurring chemoprevention and therapeutic agent capable of inhibiting cell proliferation and transformation by targeting ERK1 and ERK2.
    Carcinogenesis 09/2013; · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies demonstrated that RSK2 plays a key role in cell proliferation and transformation induced by tumor promoters such as epidermal growth factor (EGF) in mouse and human skin cells. However, no direct evidence has been found regarding the relationship of RSK2 and cell survival. In this study, we found that RSK2 interacted and phosphorylated GSK3β at Ser9. Notably, GSK3β phosphorylation at Ser9 was suppressed in RSK2(-/-) MEFs compared with RSK2(+/+) MEFs by stimulation of EGF and calcium ionophore A23187, a cellular calcium stressor. In proliferation, we found that RSK2 deficiency suppressed cell proliferation compared with RSK2(+/+) MEFs. In contrast, GSK3β(-/-) MEFs induced the cell proliferation compared with GSK3β(+/+) MEFs. Importantly, RSK2(-/-) MEFs were induced severe cellular morphology change by A23187 and enhanced G1/G0 and sub-G1 accumulation of the cell cycle phase compared with RSK2(+/+) MEFs. The sub-G1 induction in RSK2(-/-) MEFs by A23187 was correlated with increase of cytochrome c release, caspase-3 cleavage and apoptotic DNA fragmentation compared with RSK2(+/+) MEFs. Notably, return back of RSK2 into RSK2(-/-) MEFs restored A23187-induced morphological change, and decreased apoptosis, apoptotic DNA fragmentation and caspase-3 induction compared with RSK2(-/-)/mock MEFs. Taken together, our results demonstrated that RSK2 plays an important role in stress-tolerance and cell survival, resulting in cell proliferation and cancer development.
    Biochemical and Biophysical Research Communications 09/2013; · 2.28 Impact Factor