Myeloperoxidase-Dependent Oxidation of Etoposide in Human Myeloid Progenitor CD34(+) Cells

Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.
Molecular pharmacology (Impact Factor: 4.12). 03/2011; 79(3):479-87. DOI: 10.1124/mol.110.068718
Source: PubMed

ABSTRACT Etoposide is a widely used anticancer drug successfully used for the treatment of many types of cancer in children and adults. Its use, however, is associated with an increased risk of development of secondary acute myelogenous leukemia involving the mixed-lineage leukemia (MLL) gene (11q23) translocations. Previous studies demonstrated that the phenoxyl radical of etoposide can be produced by action of myeloperoxidase (MPO), an enzyme found in developing myeloid progenitor cells, the likely origin for myeloid leukemias. We hypothesized, therefore, that one-electron oxidation of etoposide by MPO to its phenoxyl radical is important for converting this anticancer drug to genotoxic and carcinogenic species in human CD34(+) myeloid progenitor cells. In the present study, using electron paramagnetic resonance spectroscopy, we provide conclusive evidence for MPO-dependent formation of etoposide phenoxyl radicals in growth factor-mobilized CD34(+) cells isolated from human umbilical cord blood and demonstrate that MPO-induced oxidation of etoposide is amplified in the presence of phenol. Formation of etoposide radicals resulted in the oxidation of endogenous thiols, thus providing evidence for etoposide-mediated MPO-catalyzed redox cycling that may play a role in enhanced etoposide genotoxicity. In separate studies, etoposide-induced DNA damage and MLL gene rearrangements were demonstrated to be dependent in part on MPO activity in CD34(+) cells. Together, our results are consistent with the idea that MPO-dependent oxidation of etoposide in human hematopoietic CD34(+) cells makes these cells especially prone to the induction of etoposide-related acute myeloid leukemia.

Download full-text


Available from: Susanne M Gollin, Feb 21, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Context: Mangiferin (2-C-β-d-gluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) is a well-known natural antioxidant distributed in various plants of the Anacardiaceae and Gentianaceae families. Mangiferin can inhibit carcinogen-induced lung or colon tumor formation in experimental animals. However, the molecular mechanisms of its chemopreventive activity remain unexplored. Objective: This study aimed to investigate the effects of mangiferin on chemical carcinogen-induced DNA damage and Nrf2-ARE signaling in hematopoietic cells. Materials and methods: Mononuclear cells (MNCs) were isolated from human umbilical cord blood (hUCB). DNA damage was evaluated by comet and micronucleus assays. The expression of Nrf2 and NQO1 was examined by immunofluorescence and western blotting. An electrophoretic mobility shift assay (EMSA) was used to detect the binding activity of Nrf2 with NQO1-ARE sequences. Results: We found that mangiferin treatment significantly reduced DNA damage in etoposide-treated MNCs, which was verified by decreased olive tail moment (OTM) and micronucleus (MN) frequency. Mangiferin treatment significantly promoted Nrf2 translocation into the nucleus and increased nuclear Nrf2 expression. Moreover, NQO1, an Nrf2 signaling target, was significantly upregulated by mangiferin treatment, and the binding activity of Nrf2 with NQO1-ARE sequences was elevated after mangiferin treatment. Discussion and conclusion: Mangiferin activated Nrf2 signaling, upregulated NQO1 expression, and significantly reduced etoposide-induced DNA damage. Thus, mangiferin is a potential cytoprotective agent for hematopoietic cells.
    Pharmaceutical Biology 11/2014; 53(4):1-9. DOI:10.3109/13880209.2014.927890 · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is increasing evidence for the existence of an association between the presence of etoposide phenoxy radicals and the development of treatment-related acute myeloid leukemia (t-AML), which occurs in a few percent of patients treated with these chemotherapeutic agents. The most common side effect caused by etoposide is myelosuppression, which limits the use of this effective drug. The goal of the study was to investigate the influence of antioxidant querectin on myelosuppression and oxidative DNA damage caused by etoposide. The influence of quercetin and/or etoposide on oxidative DNA damage was investigated in LT-12 cell line and bone marrow cells of rats via comet assay. The effect of quercetin on myelosuppression induced by etoposide was invetsigated by cytological analysis of bone marrow smears stained with May-Grünwald-Giemsa stain. Etoposide caused a significant increase in oxidative DNA damage in bone marrow cells and LT-12 cell line in comparison to the appropriate controls. Quercetin significantly reduced the oxidative DNA damage caused by etoposide both in vitro and in vivo. Quercetin also significantly protected against a decrease in the percetntage of myeloid precursors and erythroid nucleated cells caused by etoposide administration in comparison to the group treated with etoposide alone. The results of the study indicate that quercetin could be considered a protectively acting compound in bone marrow cells during etoposide therapy.
    Acta biochimica Polonica 03/2014; · 1.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protective action of quercetin against the pro-oxidant and apoptotic effect of etoposide was investigated in HL-60 cells with a high level of myeloperoxidase (MPO) activity and in cells treated with MPO inhibitor, 4-aminobenzoic acid hydrazide (ABAH). Quercetin significantly protected MPO-rich cells against the pro-oxidative (p < 0.05) and apoptotic (p < 0.05) effects of etoposide. Pre-treatment with ABAH abolished this protective influence of quercetin on apoptosis induced by etoposide but actually enhanced the action effect of quercetin against etoposide-generated reactive oxygen species (ROS) level by this cytostaic drug. Thus quercetin can protect HL-60 cells against the pro-oxidative activity of etoposides regardless of MPO activity.
    Acta biochimica Polonica 12/2014; 61(4). · 1.39 Impact Factor