Apoptosis-associated Speck-like Protein (ASC) Controls Legionella pneumophila Infection in Human Monocytes

Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 02/2011; 286(5):3203-8. DOI: 10.1074/jbc.M110.197681
Source: PubMed

ABSTRACT The ability of Legionella pneumophila to cause pneumonia is determined by its capability to evade the immune system and grow within human monocytes and their derived macrophages. Human monocytes efficiently activate caspase-1 in response to Salmonella but not to L. pneumophila. The molecular mechanism for the lack of inflammasome activation during L. pneumophila infection is unknown. Evaluation of the expression of several inflammasome components in human monocytes during L. pneumophila infection revealed that the expression of the apoptosis-associated speck-like protein (ASC) and the NOD-like receptor NLRC4 are significantly down-regulated in human monocytes. Exogenous expression of ASC maintained the protein level constant during L. pneumophila infection and conveyed caspase-1 activation and restricted the growth of the pathogen. Further depletion of ASC with siRNA was accompanied with improved NF-κB activation and enhanced L. pneumophila growth. Therefore, our data demonstrate that L. pneumophila manipulates ASC levels to evade inflammasome activation and grow in human monocytes. By targeting ASC, L. pneumophila modulates the inflammasome, the apoptosome, and NF-κB pathway simultaneously.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The causative agent of Legionnaires' disease, Legionella pneumophila, resides within alveolar macrophages by exporting 295 bacterial virulence proteins (effectors) to modulate host cell processes. This leads to the formation of a unique vacuolar niche and the suppression of macrophage cell death pathways, which, in turn, promote bacterial survival and allow sufficient time for replication. However, once nutrients within the vacuole are depleted, Legionella must act to induce host cell death in order to facilitate bacterial egress and reinfect new cells. Intracellular Legionella also evade detection by the host cell's innate immune system, which seeks to destroy invading pathogens by activating inflammasome complexes, thereby promoting proinflammatory cytokine activation and pyroptotic cell death. Understanding how different forms of programmed cell death contribute to Legionella infectivity and are manipulated by Legionella effector proteins will be important for identifying novel antibacterial therapeutic targets.
    Future Microbiology 01/2014; 9:107-118. DOI:10.2217/fmb.13.139 · 3.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Within protozoa or human macrophages Legionella pneumophila evades the endosomal pathway and replicates within an ER-derived vacuole termed the Legionella-containing vacuole (LCV). The LCV membrane-localized AnkB effector of L. pneumophila is an F-box protein that mediates decoration of the LCV with lysine48-linked polyubiquitinated proteins, which is essential for intra-vacuolar replication. Using High Throughput LC-MS analysis, we have identified the total and ubiquitinated host-derived proteome of LCVs purified from human U937 macrophages. The LCVs harboring the AA100/130b WT strain contain 1193 proteins including 24 ubiquitinated proteins, while the ankB mutant LCVs contain 1546 proteins with 29 ubiquitinated proteins. Pathway analyses reveal enrichment of proteins involved in signaling, protein transport, phosphatidylinositol and carbohydrate metabolism on both WT and ankB mutant LCVs. The ankB mutant LCVs are preferentially enriched for proteins involved in transcription/translation and immune responses. Ubiquitinated proteins on the WT strain LCVs are enriched for immune response, signaling, regulation, intracellular trafficking, and amino acid transport pathways, while ubiquitinated proteins on the ankB mutant LCVs are enriched for vesicle trafficking, signaling and ubiquitination pathways. The complete and ubiquitinated LCV proteome within human macrophages illustrates complex and dynamic biogenesis of the LCV and provide a rich resource for future studies.
    Journal of Proteome Research 11/2014; 14(1). DOI:10.1021/pr500765x · 5.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell death can be critical for host defense against intracellular pathogens because it eliminates a crucial replicative niche, and pro-inflammatory cell death can alert neighboring cells to the presence of pathogenic organisms and enhance downstream immune responses. Pyroptosis is a pro-inflammatory form of cell death triggered by the inflammasome, a multi-protein complex that assembles in the cytosol to activate caspase-1. Inflammasome activation by pathogens hinges upon violation of the host cell cytosol by activities such as the use of pore-forming toxins, the use of specialized secretion systems, or the cytosolic presence of the pathogen itself. Recently, a non-canonical inflammasome has been described that activates caspase-11 and also leads to pro-inflammatory cell death. Caspase-11 is activated rapidly and robustly in response to violation of the cytosol by bacterial pathogens as well. In this mini-review, we describe the canonical and non-canonical inflammasome pathways that are critical for host defense against a model intracellular bacterial pathogen that accesses the host cytosol-Legionella pneumophila.
    Frontiers in Cellular and Infection Microbiology 12/2013; 3:111. DOI:10.3389/fcimb.2013.00111 · 2.62 Impact Factor


Available from
May 16, 2014