Article

Functional connectivity networks in the autistic and healthy brain assessed using Granger causality.

Department of Engineering Technology, University of Houston, Houston, TX, USA.
Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 01/2010; 2010:1730-3. DOI: 10.1109/IEMBS.2010.5626702
Source: PubMed

ABSTRACT In this study, we analyze brain connectivity based on Granger causality computed from magnetoencephalographic (MEG) activity obtained at the resting state in eight autistic and eight normal subjects along with measures of network connectivity derived from graph theory in an attempt to understand how communication in a human brain network is affected by autism. A connectivity matrix was computed for each subject individually and then group templates were estimated by averaging all matrices in each group. Furthermore, we performed classification of the subjects using support vector machines and Fisher's criterion to rank the features and identify the best subset for maximum separation of the groups. Our results show that a combined model based on connectivity matrices and graph theory measures can provide 87.5% accuracy in separating the two groups. These findings suggest that analysis of functional connectivity patterns may provide a valuable method for the early detection of autism.

0 Bookmarks
 · 
290 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Depression is a heterogeneous mental illness. Neurostimulation treatments, by targeting specific nodes within the brain's emotion-regulation network, may be useful both as therapies and as probes for identifying clinically relevant depression subtypes. Here, we applied 20 sessions of magnetic resonance imaging-guided repetitive transcranial magnetic stimulation (rTMS) to the dorsomedial prefrontal cortex in 47 unipolar or bipolar patients with a medication-resistant major depressive episode. Treatment response was strongly bimodal, with individual patients showing either minimal or marked improvement. Compared with responders, nonresponders showed markedly higher baseline anhedonia symptomatology (including pessimism, loss of pleasure, and loss of interest in previously enjoyed activities) on item-by-item examination of Beck Depression Inventory-II and Quick Inventory of Depressive Symptomatology ratings. Congruently, on baseline functional magnetic resonance imaging, nonresponders showed significantly lower connectivity through a classical reward pathway comprising ventral tegmental area, striatum, and a region in ventromedial prefrontal cortex. Responders and nonresponders also showed opposite patterns of hemispheric lateralization in the connectivity of dorsomedial and dorsolateral regions to this same ventromedial region. The results suggest distinct depression subtypes, one with preserved hedonic function and responsive to dorsomedial rTMS and another with disrupted hedonic function, abnormally lateralized connectivity through ventromedial prefrontal cortex, and unresponsive to dorsomedial rTMS. Future research directly comparing the effects of rTMS at different targets, guided by neuroimaging and clinical presentation, may clarify whether hedonia/reward circuit integrity is a reliable marker for optimizing rTMS target selection.
    Biological psychiatry 11/2013; · 8.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroimaging technologies and research has shown that autism is largely a disorder of neuronal connectivity. While advanced work is being done with fMRI, MRI-DTI, SPECT and other forms of structural and functional connectivity analyses, the use of EEG for these purposes is of additional great utility. Cantor et al. (1986) were the first to examine the utility of pairwise coherence measures for depicting connectivity impairments in autism. Since that time research has shown a combination of mixed over and under-connectivity that is at the heart of the primary symptoms of this multifaceted disorder. Nevertheless, there is reason to believe that these simplistic pairwise measurements under represent the true and quite complicated picture of connectivity anomalies in these persons. We have presented three different forms of multivariate connectivity analysis with increasing levels of sophistication (including one based on principle components analysis, sLORETA source coherence, and Granger causality) to present a hypothesis that more advanced statistical approaches to EEG coherence analysis may provide more detailed and accurate information than pairwise measurements. A single case study is examined with findings from MR-DTI, pairwise and coherence and these three forms of multivariate coherence analysis. In this case pairwise coherences did not resemble structural connectivity, whereas multivariate measures did. The possible advantages and disadvantages of different techniques are discussed. Future work in this area will be important to determine the validity and utility of these techniques.
    Frontiers in Human Neuroscience 01/2014; 8:45. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gaze processing deficits are a seminal, early, and enduring behavioral deficit in autism spectrum disorder (ASD); however, a comprehensive characterization of the neural processes mediating abnormal gaze processing in ASD has yet to be conducted.
    Journal of Neurodevelopmental Disorders 01/2014; 6(1):15. · 3.45 Impact Factor

Full-text (2 Sources)

View
9 Downloads
Available from
Jul 4, 2014