Article

Simulation Experience Enhances Medical Students' Interest in Cardiothoracic Surgery

Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
The Annals of thoracic surgery (Impact Factor: 3.65). 12/2010; 90(6):1967-73; discussion 1973-4. DOI: 10.1016/j.athoracsur.2010.06.117
Source: PubMed

ABSTRACT Applications to cardiothoracic training programs have declined dramatically. Increased effort in recruiting trainees is paramount. In this study, we test our hypothesis that mentored instruction on cardiothoracic simulators will enhance the interest of junior medical students in cardiothoracic surgery.
First- and second-year medical students were recruited from a "surgery interest group" to receive mentored instruction on high-fidelity cardiothoracic simulators. Before and after simulation assessment tools were used to assess attitudes toward simulation, general surgery, and cardiothoracic surgery.
Forty-four medical students participated in the study. Although 80% of the students were interested in pursuing a career in surgery before the course, the majority (64%) indicated they were "neutral" about pursuing a career in cardiothoracic surgery. After participating in the course, 61% of the students agreed or strongly agreed that they were interested in pursuing a career in cardiothoracic surgery (p = 0.001). When asked to select a surgical subspecialty for their third-year clerkship rotation, 18% of the students selected thoracic surgery before participating in the simulator course versus 39% after completing the course. This increase was most evident among the female participants, of whom only 3 (12%) selected a thoracic rotation before the simulator course versus 9 (35%) after completion of the course (p < 0.05).
High-fidelity surgical simulators are an effective way to introduce medical students to cardiothoracic surgery. Participation in moderated simulator sessions improves attitudes toward cardiothoracic surgery as a career choice and correlates with a greater interest in selecting thoracic surgery as a third-year clerkship rotation. The role of surgical simulation as a recruitment tool should be further delineated.

0 Followers
 · 
117 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enthusiasm for simulation early in cardiothoracic surgery training is growing, yet evidence demonstrating its utility is limited. We examined the effect of supervised and unsupervised training on coronary anastomosis performance in a randomized trial among medical students. Forty-five medical students were recruited for this single-blinded, randomized controlled trial using a low-fidelity simulator. After viewing an instructional video, all participants attempted an anastomosis. Subsequently, the participants were randomized to 1 of 3 groups: control (n = 15), unsupervised training (n = 15), or supervised training with a cardiothoracic surgeon or fellow (n = 15). Both the supervised and unsupervised groups practiced for 1 hour per week. After 4 weeks, the participants repeated the anastomosis. All pre- and posttraining performances were videotaped and rated independently by 3 cardiothoracic surgeons blinded to the randomization. All raters scored 13 assessment items on a 1 to 5 (low-high) scale along with an overall pass/fail rating. After the training period, all 3 groups showed significant improvements in composite scores (control: +0.52 ± 0.69 [P = .014], unsupervised: +1.05 ± 0.48 [P < .001], and supervised: +1.10 ± 0.84 [P < .001]). Compared with control group, both supervised (P = .005) and unsupervised trainees (P = .005) demonstrated a significant improvement. Between the supervised and unsupervised groups there were no statistically significant differences in composite scores. Practice on low-fidelity simulators enabled trainees to improve on a broad range of skills; however, the additional effect of attending-level supervision is limited. In an era of increasing staff surgeon responsibilities, unsupervised practice may be sufficient for inexperienced trainees. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
    Journal of Thoracic and Cardiovascular Surgery 09/2014; 149(1). DOI:10.1016/j.jtcvs.2014.09.029 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study objective was to introduce senior surgeons, referred to as members of the "Senior Tour," to simulation-based learning and evaluate ongoing simulation efforts in cardiothoracic surgery. Thirteen senior cardiothoracic surgeons participated in a 2½-day Senior Tour Meeting. Of 12 simulators, each participant focused on 6 cardiac (small vessel anastomosis, aortic cannulation, cardiopulmonary bypass, aortic valve replacement, mitral valve repair, and aortic root replacement) or 6 thoracic surgical simulators (hilar dissection, esophageal anastomosis, rigid bronchoscopy, video-assisted thoracoscopic surgery lobectomy, tracheal resection, and sleeve resection). The participants provided critical feedback regarding the realism and utility of the simulators, which served as the basis for a composite assessment of the simulators. All participants acknowledged that simulation may not provide a wholly immersive experience. For small vessel anastomosis, the portable chest model is less realistic compared with the porcine model, but is valuable in teaching anastomosis mechanics. The aortic cannulation model allows multiple cannulations and can serve as a thoracic aortic surgery model. The cardiopulmonary bypass simulator provides crisis management experience. The porcine aortic valve replacement, mitral valve annuloplasty, and aortic root models are realistic and permit standardized training. The hilar dissection model is subject to variability of porcine anatomy and fragility of the vascular structures. The realistic esophageal anastomosis simulator presents various approaches to esophageal anastomosis. The exercise associated with the rigid bronchoscopy model is brief, and adding additional procedures should be considered. The tracheal resection, sleeve resection, and video-assisted thoracoscopic surgery lobectomy models are highly realistic and simulate advanced maneuvers. By providing the necessary tools, such as task trainers and assessment instruments, the Senior Tour may be one means to enhance simulation-based learning in cardiothoracic surgery. The Senior Tour members can provide regular programmatic evaluation and critical analyses to ensure that proposed simulators are of educational value.
    The Journal of thoracic and cardiovascular surgery 11/2011; 143(2):264-72. DOI:10.1016/j.jtcvs.2011.10.013 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: To understand how teaching behaviors contribute to simulation-based learning, we used a 7-category educational framework to assess the teaching behaviors used in basic skills training. METHODS: Twenty-four first-year cardiothoracic surgery residents and 20 faculty participated in the Boot Camp vessel anastomosis sessions. A portable chest model with synthetic graft and target vessels and a tissue-based porcine model simulated coronary artery anastomosis. After each 2-hour session on days 1 and 2, residents assessed teaching behaviors of faculty using a 20-item questionnaire based on the 5-point Likert scale. After session on day 1, faculty completed a self-assessment questionnaire. At 3 months, faculty completed self-assessment questionnaires regarding teaching behaviors in simulation and clinical settings. Each questionnaire item represents 1 or more teaching categories: "learning climate," "control of session," "communication of goals," "promoting understanding and retention," "evaluation," "feedback," and "self-directed learning." RESULTS: Generally, resident ratings indicated that faculty showed positive teaching behaviors. Faculty self-assessment ratings were all lower (P < .025) than those assigned to them by the residents except for 1 component representative of "feedback," which approached significance (P = .04); 2 items, representative of "promoting understanding and retention" and "evaluation", had mean scores of less than 3. At 3 months, compared with self-assessment at Boot Camp, faculty ratings suggested improved teaching behaviors in their simulation settings in the following: "learning climate," "control of session," "communication of goals," "promoting understanding and retention," and "evaluation." The simulation environment was perceived as more positive for technical skills training in certain aspects compared with clinical setting: instructor reviewed function and operation of equipment with learner before session (representative of "promoting understanding and retention") and instructor allowed the learner ample time to practice (representative of "control of session" and "promoting understanding and retention") (P < .025). CONCLUSIONS: Simulation-based skills training is perceived by residents to be associated with positive teaching behaviors. Faculty self-ratings indicate that they do not always use many of these teaching behaviors and that their performance can be improved. The simulation setting may provide greater opportunity for positive teaching behaviors compared with the clinical environment.
    The Journal of thoracic and cardiovascular surgery 10/2012; 145(1). DOI:10.1016/j.jtcvs.2012.07.111 · 3.99 Impact Factor