Design and rationale of the Reduction of Infarct Expansion and Ventricular Remodeling with Erythropoietin after Large Myocardial Infarction (REVEAL) trial

Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
American heart journal (Impact Factor: 4.56). 11/2010; 160(5):795-803.e2. DOI: 10.1016/j.ahj.2010.09.007
Source: PubMed

ABSTRACT Acute myocardial infarction (MI) remains a leading cause of death despite advances in pharmacologic and percutaneous therapies. Animal models of ischemia/reperfusion have demonstrated that single-dose erythropoietin may reduce infarct size, decrease apoptosis, and increase neovascularization, possibly through mobilization of endothelial progenitor cells.
REVEAL is a randomized, double-blind, placebo-controlled, multicenter trial evaluating the effects of epoetin α on infarct size and left ventricular remodeling in patients with large MIs. The trial comprises a dose-escalation safety phase and a single-dose efficacy phase using the highest acceptable epoetin α dose up to 60,000 IU. Up to 250 ST-segment elevation myocardial infarction patients undergoing primary or rescue percutaneous coronary intervention will be randomized to intravenous epoetin α or placebo within 4 hours of successful reperfusion. The primary study end point is infarct size expressed as a percentage of left ventricular mass, as measured by cardiac magnetic resonance imaging 2 to 6 days post study medication administration. Secondary end points will assess changes in endothelial progenitor cell numbers and changes in indices of ventricular remodeling.
The REVEAL trial will evaluate the safety and efficacy of the highest tolerated single dose of epoetin α in patients who have undergone successful rescue or primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction.

  • [Show abstract] [Hide abstract]
    ABSTRACT: There is continued interest in the concept of limiting myocardial infarct size with adjunctive agents administered along with reperfusion injury; however, there remains considerable controversy in the literature. The purpose of this article is to review the medical literature on clinical trials performed during the past 3 years that have attempted to reduce myocardial infarct size by administration of adjunctive therapies along with reperfusion therapy. A PubMed-driven literature search revealed a host of clinical trials focusing on the following prominent types of therapies: endogenous conditioning (postconditioning and remote ischemic conditioning); rapid cooling; pharmacological therapy (cyclosporine, abciximab, clopidogrel, tirofiban, erythropoietin, thrombus aspiration, adenosine, glucose-insulin-potassium, statins, antidiabetic agents, FX06, iron chelation, and ranolazine). Although there remains some controversy, quite a few of these studies showed that adjunctive therapy further reduced myocardial infarct size when coupled with reperfusion. Antiplatelet agents are emerging as some of the newest agents that seem to have cardioprotective capabilities. Postconditioning has become a bit more controversial in the clinical literature; remote conditioning, early and rapid cooling, adenosine, and ranolazine are intriguing therapies deserving of larger studies. Certain agents and maneuvers, such as erythropoietin, protein kinase C δ inhibitors, iron chelation, and intra-aortic balloon counterpulsation, perhaps should be retired. The correct adjunctive therapy administered along with reperfusion has the capability of further reducing myocardial injury during ST-segment-elevation myocardial infarction.
    Circulation Research 08/2013; 113(4):451-63. DOI:10.1161/CIRCRESAHA.112.300627 · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: There is a need to define the exact benefits and contraindications of use of high-dose recombinant human erythropoietin (EPO) for its non-hematopoietic function as a cytokine that enhances tissue repair after injury. This review compares the outcomes from use of EPO in the injured heart and kidney, two organs that are thought, traditionally, to have intrinsically-different repair mechanisms. Evidence Acquisitions: Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Results: Ongoing work by us on EPO protection of ischemia-reperfusion-injured kidneys indicated, first, that EPO acutely enhanced kidney repair via anti-apoptotic, pro-regenerative mechanisms, and second, that EPO may promote chronic fibrosis in the long term. Work by others on the ischaemia-injured heart has also indicated that EPO promotes repair. Although myocardial infarcts are made up mostly of necrotic tissue, many publications state EPO is anti-apoptotic in the heart, as well as promoting healing via cell differentiation and stimulation of granulation tissue. In the case of the heart, promotion of fibrosis may be advantageous where an infarct has destroyed a zone of cardiomyocytes, but if EPO stimulates progressive fibrosis in the heart, this may promote cardiac failure. Conclusions: A major concern in relation to the use of EPO in a cytoprotective role is its stimulation of long-term inflammation and fibrosis. EPO usage for cytoprotection is undoubtedly advantageous, but it may need to be offset with an anti-inflammatory agent in some organs, like kidney and heart, where progression to chronic fibrosis after acute injury is often recorded.
    07/2013; 2(3):154-165. DOI:10.12860/JNP.2013.27
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erythropoietin (Epo) has been shown to improve myocardial function in models of experimental myocardial infarction, but has also been associated with a rise in thromboembolic events. Thus, the aim of this study was to investigate the influence of Epo on platelet activation and coagulation in patients with acute myocardial infarction (AMI).
    Thrombosis Journal 08/2014; 12:18. DOI:10.1186/1477-9560-12-18 · 1.31 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014