Article

Predictive ability of subsets of single nucleotide polymorphisms with and without parent average in US Holsteins.

Department of Dairy Science, University of Wisconsin, Madison 53706, USA.
Journal of Dairy Science (Impact Factor: 2.55). 12/2010; 93(12):5942-9. DOI: 10.3168/jds.2010-3335
Source: PubMed

ABSTRACT Genome-enabled prediction of breeding values using high-density panels (HDP) can be highly accurate, even for young sires. However, the cost of the assay may limit its use to elite animals only. Low-density panels (LDP) containing a subset of single nucleotide polymorphisms (SNP) may give reasonably accurate predictions and could be used cost-effectively with young males and females. This study evaluates strategies for selecting subsets of SNP for several traits, compares predictive ability of LDP with that of HDP, and assesses the benefits of including parent average (PA) as a predictor in models using LDP. Data consisting of progeny-test predicted transmitting ability (PTA) for net merit and 6 other traits of economic interest from 4,783 Holstein sires were evaluated using testing and training sets with regressions on their high-density genotypes and parent averages for net merit index. Additionally, SNP subsets of different sizes were selected using different strategies, including the "best" SNP based on the absolute values of their estimated effects from HDP models for either the trait itself or lifetime net merit, and evenly spaced (ES) SNP across the genome. Overall, HDP models had the best predictive ability, setting an upper bound for the predictive ability of LDP sets. Low-density panels targeting the SNP with strongest effects (for either a single trait or lifetime net merit) provided reasonably accurate predictions and generally outperformed predictions based on evenly spaced SNP. For example, evenly spaced sets would require at least 5,000 to 7,500 SNP to reach 95% of the predictive ability provided by HDP. On the other hand, this level of predictive ability can be achieved with sets of 2,000 SNP when SNP are selected based on magnitude of estimated effects for the trait. Accuracy of predictions based on LDP can be improved markedly by including parent average as a fixed effect in the model; for example, a set with the 1,000 best SNP using the parent average achieved the 95% of the accuracy of a HDP model.

0 Followers
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWAS) have detected large numbers of variants associated with complex human traits and diseases. However, the proportion of variance explained by GWAS-significant single nucleotide polymorphisms has been usually small. This brought interest in the use of whole-genome regression (WGR) methods. However, there has been limited research on the factors that affect prediction accuracy (PA) of WGRs when applied to human data of distantly related individuals. Here, we examine, using real human genotypes and simulated phenotypes, how trait complexity, marker-quantitative trait loci (QTL) linkage disequilibrium (LD), and the model used affect the performance of WGRs. Our results indicated that the estimated rate of missing heritability is dependent on the extent of marker-QTL LD. However, this parameter was not greatly affected by trait complexity. Regarding PA our results indicated that: (a) under perfect marker-QTL LD WGR can achieve moderately high prediction accuracy, and with simple genetic architectures variable selection methods outperform shrinkage procedures and (b) under imperfect marker-QTL LD, variable selection methods can achieved reasonably good PA with simple or moderately complex genetic architectures; however, the PA of these methods deteriorated as trait complexity increases and with highly complex traits variable selection and shrinkage methods both performed poorly. This was confirmed with an analysis of human height. © 2015 The Authors. Annals of Human Genetics published by University College London (UCL) and John Wiley & Sons Ltd.
    Annals of Human Genetics 01/2015; 79(2). DOI:10.1111/ahg.12099 · 1.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Genotype imputation is an important tool for whole-genome prediction as it allows cost reduction of individual genotyping. However, benefits of genotype imputation have been evaluated mostly for linear additive genetic models. In this study we investigated the impact of employing imputed genotypes when using more elaborated models of phenotype prediction. Our hypothesis was that such models would be able to track genetic signals using the observed genotypes only, with no additional information to be gained from imputed genotypes.ResultsFor the present study, an outbred mice population containing 1,904 individuals and genotypes for 1,809 pre-selected markers was used. The effect of imputation was evaluated for a linear model (the Bayesian LASSO - BL) and for semi and non-parametric models (Reproducing Kernel Hilbert spaces regressions ¿ RKHS, and Bayesian Regularized Artificial Neural Networks ¿ BRANN, respectively). The RKHS method had the best predictive accuracy. Genotype imputation had a similar impact on the effectiveness of BL and RKHS. BRANN predictions were, apparently, more sensitive to imputation errors. In scenarios where the masking rates were 75% and 50%, the genotype imputation was not beneficial. However, genotype imputation incorporated information about important markers and improved predictive ability, especially for body mass index (BMI), when genotype information was sparse (90% masking), and for body weight (BW) when the reference sample for imputation was weakly related to the target population.Conclusions In conclusion, genotype imputation is not always helpful for phenotype prediction, and so it should be considered in a case-by-case basis. In summary, factors that can affect the usefulness of genotype imputation for prediction of yet-to-be observed traits are: the imputation accuracy itself, the structure of the population, the genetic architecture of the target trait and also the model used for phenotype prediction.
    BMC Genetics 12/2014; 15(1):1271. DOI:10.1186/s12863-014-0149-9 · 2.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following the publication of the ENCODE project results, there has been increasing interest in investigating different areas of the chromosome and evaluating the relative contribution of each area to expressed phenotypes. This study aims to evaluate the contribution of variants, classified by minor allele frequency and gene annotation, to the observed interindividual differences. In this study, we fitted Bayesian linear regression models to data from Genetic Analysis Workshop 18 (n = 395) to estimate the variance of standardized and log-transformed systolic blood pressure that can be explained by subsets of genetic markers. Rare and very rare variants explained an overall higher proportion of the variance, as did markers located within a gene rather than flanking regions. The proportion of variance explained by rare and very rare variants decreased when we controlled for the number of markers, suggesting that the number of contributing rare alleles plays an important role in the genetic architecture of chronic disease traits. Our findings lend support to the "common disease, rare variant" hypothesis for systolic blood pressure and highlight allele frequency and functional annotation of a polymorphism as potentially crucial considerations in whole genome study designs.
    BMC proceedings 06/2014; 8(Suppl 1):S102. DOI:10.1186/1753-6561-8-S1-S102

Full-text (2 Sources)

Download
52 Downloads
Available from
May 22, 2014

Similar Publications