Article

Behavioral insights from mouse models of forebrain--and amygdala-specific glucocorticoid receptor genetic disruption.

Department of Pediatrics, Vanderbilt University, Nashville, TN 37232, United States.
Molecular and Cellular Endocrinology (Impact Factor: 4.04). 11/2010; 336(1-2):2-5. DOI: 10.1016/j.mce.2010.11.011
Source: PubMed

ABSTRACT Genetic modulation of glucocorticoid receptor (GR) function in the brain using transgenic and gene knockout mice has yielded important insights into many aspects of GR effects on behavior and neuroendocrine responses, but significant limitations regarding interpretation of region-specific and temporal requirements remain. Here, we summarize the behavioral phenotype associated with two knockout mouse models to define the role of GRs specifically within the forebrain and amygdala. We report that forebrain-specific GR knockout mice exhibit impaired negative feedback regulation of the hypothalamic-pituitary-adrenal (HPA) axis and increased despair- and anxiety-like behaviors. In addition, mice with a disruption of GR specifically within the central nucleus of the amygdala (CeA) are deficient in conditioned fear behavior. Overall, these models serve as beneficial tools to better understand the biology of GR signaling in the normal stress response and in mood disorders.

0 Bookmarks
 · 
94 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucocorticoids are steroid hormones regulated in a circadian and stress-associated manner to maintain various metabolic and homeostatic functions that are necessary for life. Synthetic glucocorticoids are widely prescribed drugs for many conditions including asthma, chronic obstructive pulmonary disease (COPD), and inflammatory disorders of the eye. Research in the past few years has begun to unravel the profound complexity of glucocorticoid signaling and has contributed remarkably to improved therapeutic strategies. Glucocorticoids signal through the glucocorticoid receptor (GR), a member of the superfamily of nuclear receptors, in both genomic and non-genomic ways in almost every tissue in the human body. In this review, we provide an update on glucocorticoid receptor signaling and highlight the role of GR signaling in physiological and pathophysiological conditions in the major organ systems in the human body.
    Trends in Pharmacological Sciences 08/2013; · 9.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Environmental stimuli that signal real or potential threats to homeostasis lead to glucocorticoid secretion by the hypothalamic-pituitary-adrenocortical (HPA) axis. Glucocorticoids promote energy redistribution and are critical for survival and adaptation. This adaptation requires the integration of multiple systems and engages key limbic-neuroendocrine circuits. Consequently, glucocorticoids have profound effects on synaptic physiology, circuit regulation of stress responsiveness, and, ultimately, behavior. While glucocorticoids initiate adaptive processes that generate energy for coping, prolonged or inappropriate glucocorticoid secretion becomes deleterious. Inappropriate processing of stressful information may lead to energetic drive that does not match environmental demand, resulting in risk factors for pathology. Thus, dysregulation of the HPA axis may promote stress-related illnesses (e.g. depression, PTSD). This review summarizes the latest developments in central glucocorticoid actions on synaptic, neuroendocrine, and behavioral regulation. Additionally, these findings will be discussed in terms of the energetic integration of stress and the importance of context-specific regulation of glucocorticoids.
    Frontiers in Neuroendocrinology 12/2013; · 7.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress.Molecular Psychiatry advance online publication, 4 March 2014; doi:10.1038/mp.2014.12.
    Molecular psychiatry 03/2014; · 15.05 Impact Factor

Full-text

View
1 Download
Available from