Article

Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams

CONICET Laboratorio de Investigaciones en Ecología y Sistemática Animal-Universidad Nacional de la Patagonia San Juan Bosco, Argentina.
Science of The Total Environment (Impact Factor: 3.16). 01/2011; 409(3):612-24. DOI: 10.1016/j.scitotenv.2010.10.034
Source: PubMed

ABSTRACT Changes in land-use practices have affected the integrity and quality of water resources worldwide. In Patagonia there is a strong concern about the ecological status of surface waters because these changes are rapidly occurring in the region. To test the hypothesis that greater intensity of land-use will have negative effects on water quality, stream habitat and biodiversity we assessed benthic macroinvertebrates, riparian/littoral invertebrates, fish and birds from the riparian corridor and environmental variables of 15 rivers (Patagonia) subjected to a gradient of land-use practices (non-managed native forest, managed native forest, pine plantations, pasture, urbanization). A total of 158 macroinvertebrate taxa, 105 riparian/littoral invertebrate taxa, 5 fish species, 34 bird species, and 15 aquatic plant species, were recorded considering all sites. Urban land-use produced the most significant changes in streams including physical features, conductivity, nutrients, habitat condition, riparian quality and invertebrate metrics. Pasture and managed native forest sites appeared in an intermediate situation. The highest values of fish and bird abundance and diversity were observed at disturbed sites; this might be explained by the opportunistic behavior displayed by these communities which let them take advantage of increased trophic resources in these environments. As expected, non-managed native forest sites showed the highest integrity of ecological conditions and also great biodiversity of benthic communities. Macroinvertebrate metrics that reflected good water quality were positively related to forest land cover and negatively related to urban and pasture land cover. However, by offering stream edge areas, pasture sites still supported rich communities of riparian/littoral invertebrates, increasing overall biodiversity. Macroinvertebrates were good indicators of land-use impact and water quality conditions and resulted useful tools to early alert of disturbances in streams. Fish and birds having a greater ability of dispersion and capacity to move quickly from disturbances would reflect changes at a higher scale.

1 Follower
 · 
147 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT. Temporal (May 2005 to February 2006) and habitat distribution (pools and riffles) of Hirudinea species was analyzed at a post urban reach from Esquel stream (Chubut province, Patagonia, Argentina). Site was located 5.7 km downstream a Waste Treatment Plant. Mean values of nutrients: ammonia, nitrates and soluble reactive phosphate, as well water conductivity, turbidity and total suspended solids indicated physical and organic pollution. Leeches assemblage was composed by the glossiphonids: Helobdella scutifera Blanchard, 1900, H. michaelseni (Blanchard, 1900), H. simplex (Moore, 1911), Helobdella sp., H. hyalina Ringuelet, 1942, H. obscura Ringuelet, 1942 and the semiscolecid Patagoniobdella variabilis (Blanchard, 1900). From these H. hyalina and H. obscura are new records for Chubut province. Helobdella hyalina (810 ind.m-2) and H. simplex (465 ind. m-2) clearly dominated the assemblage at the reach. Only H. simplex displayed a spatial preference being significantly more abundant in pools than in riffle habitats (p<0.001). Species recruitment occurred mostly at September, December and March when juveniles were very abundant. Although several species of Helobdella were able to live in the disturbed section of the stream, only H. simplex and H. hyalina sustained large populations at the site and can be considered as tolerant to organic enrichment. This information is valuable to future studies on stream condition assessment in mountainous areas in Patagonia, and in other areas in which these species are present.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Forest remnants can locally improve water quality of deforested streams in a reset effect, but few studies evaluated if leaf breakdown rates respond to forest remnants or, at a finer spatial scale, to riparian forest structure. We studied leaf breakdown rates along a deforested Neotropical stream as it flowed through a sugarcane/forest remnant transition; we adjusted a non-linear model to describe this relationship, and evaluated whether this model was further related to the effects of riparian forest structure, stream physical characteristics and shredder abundances. Modeled leaf breakdown rates rapidly increased as the stream entered the forest remnant, stabilizing in the forest interior after about 100 m. Observed leaf breakdown rates deviated from the model within the forest remnant. This unexplained residual variation was related to riparian forest structure, which was heterogeneous within the remnant. Leaf breakdown rates were not related to stream physical characteristics, but were significantly related to the abundance of shredders, especially with the dominant leaf-mining Chironomidae. Abundances of leaf-mining Chironomidae were strongly related to both distance along the forest remnant and riparian forest structure. Therefore, higher leaf breakdown rates as the stream flowed through the forest remnant were possibly due to increases in abundances of leaf-mining Chironomidae, which responded to variation at both spatial scales studied. These results suggest that forest remnants are important in rural landscapes not only by improving stream water quality but also by restoring ecosystem functions.
    Agriculture Ecosystems & Environment 09/2015; 207. DOI:10.1016/j.agee.2015.04.014 · 3.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: It is well known that fish predation alters ecosystem processes by top-down effects. Salmonids are described as aggressive, visually and size-selective predators. Thus, prey selection by the non-native rainbow trout was examined on a seasonal basis at two streams: Nant y Fall (NyF) and Cabeza de Vaca (CVA) at Patagonia, a region where this kind of information is lacking. Results: The benthos density at NyF was higher than that at CVA, and at both streams, riffles supported higher macroinvertebrate densities than pools. The diet of trouts from both streams was dominated by aquatic macroinvertebrates, was diverse, and was varied seasonally. The individuals represented in the stomach contents were among the largest available at the streams. Diet diversity peaked during spring at NyF and during summer at CVA, whereas at both streams, the niche width peaked during spring. Prey selectivity varied seasonally. The selected preys included both aquatic (Gasteropoda, Crustacea, Plecoptera, Trichoptera, Ephemeroptera, Coleoptera, Diptera, and Odonata) and terrestrial organisms (adult dipterans, Oligochaeta, Araneae, Homoptera, Hymenoptera, Orthoptera, and Hemiptera). Some infaunal invertebrates like oligochaetes and some small Coleoptera and Diptera larvae (mainly Chironomidae) were not selected by trouts. Conclusions: Despite of the overall dominance of trichopteran species, the composition of the diet of the rainbow trout varied seasonally. This fish positively selected both aquatic and terrestrial organisms. We observed that in both streams, trouts consumed the larger individuals available in those environments.
    Zoological studies 01/2015; 54(29):1-14. · 1.01 Impact Factor

Full-text

Download
85 Downloads
Available from
May 20, 2014